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Abstract

Ultracold gases provide a versatile platform for trapping, controlling, and manipulating both
external and internal degrees of freedom of the atoms. In particular, the experimental
realization of Bose-Einstein condensates and degenerate Fermi gases inaugurated an exciting
era of quantum-gas experiments to perform quantum simulations or investigate interesting
quantum phases. Famous examples in our community are the superfluid to Mott-insulator
phase transition and the bright soliton. In particular, the study of exotic quantum phases is
the main topic of this thesis.

A remarkably bizarre phase is the supersolid phase, which can arise from the competition
between short and long-range interactions. In this state, two symmetries, the translational
and the gauge symmetry, are spontaneously broken. For this reason, two antithetical orders
coexist, and the system is simultaneously superfluid and crystal.

In this thesis, we use dipolar gases of erbium atoms to find the regime in which a supersolid
exists. We then ask the following question: how does this system manifest its properties? We
answer this question by performing two different protocols to perturb this state and study
its response. A particularly relevant result is the presence in the excitation spectrum of two
branches. The first branch is related to crystal excitations, while the second to superfluid
excitations.

Furthermore, we approach the study of the quantum phases of an erbium condensate confined
in reduced dimensions. By using a one-dimensional optical lattice, we load the atoms in an
array of quasi-2D planes and study their distribution in the different lattice sites. We found
that if the onsite dipole-dipole interaction is attractive on average, reducing the scattering
length drives a localization of the atoms in a single lattice site. We assess the role that
quantum fluctuations play in this geometry and discover a regime in which kinetic energy
and quantum fluctuations compete to stabilize the system. This geometry gives rise to soliton
or droplet solutions.
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Zusammenfassung

Ultrakalte Gase bieten eine vielseitige Plattform für das Einfangen, Kontrollieren und Ma-
nipulieren sowohl externer als auch interner Freiheitsgrade der Atome. Insbesondere die ex-
perimentelle Realisierung von Bose-Einstein-Kondensaten und entarteten Fermi-Gasen hat
eine aufregende Ära von Quantengasexperimenten eingeläutet, mit denen Quantensimula-
tionen durchgeführt oder interessante Quantenphasen untersucht werden können. Berühmte
Beispiele in unserer Gemeinschaft sind der Phasenübergang vom Superfluid zum Mott-
Isolator und das helle Soliton. Insbesondere die Untersuchung von exotischen Quantenphasen
ist das Hauptthema dieser Arbeit.

Eine bemerkenswert bizarre Phase ist die supersolide Phase, die durch den Wettbewerb
zwischen kurz- und langreichweitigen Wechselwirkungen entstehen kann. In diesem Zustand
werden zwei Symmetrien, die Translations- und die Eichsymmetrie, spontan gebrochen. Aus
diesem Grund existieren zwei gegensätzliche Ordnungen nebeneinander, und das System ist
gleichzeitig superfluid und kristallin.

In dieser Arbeit verwenden wir dipolare Gase von Erbium-Atomen, um das Regime zu finden,
in dem ein Supersolid existiert. Dann stellen wir die folgende Frage: Wie manifestiert dieses
System seine Eigenschaften? Zur Beantwortung dieser Frage führen wir zwei verschiedene
Protokolle durch, um diesen Zustand zu stören und seine Reaktion zu untersuchen. Ein
besonders wichtiges Ergebnis ist das Vorhandensein von zwei Zweigen im Anregungsspek-
trum. Der erste Zweig steht im Zusammenhang mit Kristallanregungen, der zweite mit
superfluiden Anregungen.

Darüber hinaus nähern wir uns der Untersuchung der Quantenphasen eines Erbium-Kondensats,
das in reduzierten Dimensionen. Durch die Verwendung eines eindimensionalen optischen
Gitters laden wir die Atome in eine Anordnung von Quasi-2D-Ebenen und untersuchen
ihre Verteilung auf den verschiedenen Gitterplätzen. Wir fanden heraus dass, wenn die
Dipol-Dipol-Wechselwirkung vor Ort im Durchschnitt anziehend ist, die Verringerung der
Streulänge Länge zu einer Lokalisierung der Atome an einem einzigen Gitterplatz führt. Wir
bewerten die Rolle, die Quantenfluktuationen in dieser Geometrie spielen, und entdecken
ein Regime, in dem kinetische Energie und Quantenfluktuationen um die Stabilisierung des
Systems konkurrieren. Diese Geometrie führt zu Soliton oder Tröpfchenlösungen.
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Introduction

Motivation

Imagine you need to solve a challenging puzzle. The first thing you do is carefully look
at the picture shown on the box. As the next step, it is useful to collect pieces of similar
colors or the ones at the edges. After having arranged those, you can now start with the
more demanding ones, showing different shades or ambiguous figures. Finally, you can start
putting all those pieces together to reconstruct the big picture.

Similarly, physics research often starts with identifying a challenging phenomenon or ques-
tion. To solve it, one approach is to first tackle a simpler version of that problem. As soon as
the solution becomes accepted, it is adapted to a more complicated version, where elaborate
elements are added to the problem to unravel the big question. Differently from puzzles, in
some cases someone threw away the box, leaving us with no hint on what the final picture
will look like.

Ultracold gases are powerful platforms to trap, control and manipulate both external and
internal degrees of freedom of the atoms [Blo08]. Nowadays, in experiments, atoms can be
trapped in arbitrary geometries and dimensionality by using far-off-resonant laser light. A
few common examples are box potentials, arrays of 1D or 2D confinements, and optical lat-
tices. The internal states can be manipulated as well through the use of magnetic fields and
electromagnetic waves. Furthermore, it is possible to tune the atomic interaction, by chang-
ing a bias magnetic field through the use of Feshbach resonances [Chi10]. The experimental
realization of Bose-Einstein condensates (BEC) [And95, Bra95, Dav95] and degenerate Fermi
gases [DeM99, Sch01, Tru01] opened the door to a new era of quantum-gas experiments per-
forming quantum simulations or investigating fascinating phenomena and exotic quantum
phases. The investigation of such exotic quantum phases is the main topic of this thesis.

A well-known example in the quantum-gas community is the superfluid to Mott-insulator
phase transition [Gre02]. In this case, a Bose-Einstein condensate is loaded into an opti-
cal lattice, formed by the intersection of multiple laser beams, producing a standing wave
pattern. Since an atom loaded in this lattice tends to sit in the minima or maxima of the op-
tical potential, this system resembles the geometrical configurations of electrons in crystalline
solids. This is a highly controlled environment, where one can study solid-state behaviors.
Changing the intensity of the laser beams modifies the lattice potential depth. This results
in a change in the probability for an atom to tunnel from one lattice site to an adjacent one.
The competition between tunneling and inter-atomic interaction determines the properties
of the system. On the one hand, if tunneling dominates, each atom is delocalized over the
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entire lattice, leading to the superfluid phase. On the other hand, if onsite interactions are
dominant, the atoms are localized in each lattice site, and long-range phase coherence is lost
resulting in the so-called Mott-insulator phase.

Another interesting phase is the bright soliton [Zak72, Dra89]. Originally studied to under-
stand the propagation of waves in the oceans, solitons are self-reinforcing waves that maintain
their shape while propagating. When colliding with other solitons, they emerge unaffected.
In the ultracold community, this phase arises from the interplay between kinetic energies (dis-
persive effect) and attractive interaction (focusing effect), see for e.g. Ref. [Kha02, Mal08].
The existence of solitons can depend on the dimensionality of the system. For instance, in
alkali atoms, interacting via a contact-type potential, this state exists as a ground state in
one dimension independently of the atom numbers. In contrast, in two dimensions, over a
critical number of atoms the interactions dominate over the kinetic energies, and the system
collapses [Sai03].

Going back to the analogy of “solving a puzzle”. After arranging the pieces of similar
colors, the next step for solving the puzzle is trying to add the more challenging ones.
This can correspond, in the ultracold-gas community, to study: mixtures by adding another
species/spin; obtaining single atom control with a quantum gas microscope; coupling the
system to an external cavity to add infinite-range interactions; or like in our case, Bose-
condense magnetic atoms that inherently experience long-range and anisotropic dipole-dipole
interaction.

A breakthrough experiment with magnetic atoms was the one in the group of Tilman Pfau in
Stuttgart, where a transition from a BEC to a crystal (droplet) phase was observed in a pa-
rameter regime in which the traditional mean-field approach predicted the collapse [Kad16].
Surprised by this experiment the interest of the community focused on the mechanism re-
sponsible for the stability of this state. Between the different theoretical proposals, the two
most rated mechanisms were the quantum fluctuations [Pet15] and the 3-body repulsive po-
tentials [Lu15, Xi16, Bis15]. Further research in the same group and in our ERBIUM group,
before starting my PhD, confirmed the quantum fluctuations as the stabilization mecha-
nism [FB16, Cho16]. In these works, the authors create a single or multi-droplets state by
changing the interactions in order to make the long-range contribution dominant over the
contact one. In this phase, the atoms behave similarly to a liquid droplet, and as in the
soliton phase, the system is self-bound. However, in this case, the dispersive effect arises
from the quantum fluctuations and the focusing effect from the interplay between contact
and dipole-dipole interactions.

Let me mention two other experiments from our group that are particularly inspiring and
relevant to this thesis. In the first one, erbium atoms are loaded into a three-dimensional
optical lattice realizing the so-called extended Bose-Hubbard model [Bai16a]. The effect of
dipole-dipole interaction does not only shift the condition for being in the superfluid/Mott-
insulator state but also extends the interaction to the nearest neighbor due to its long-
range nature. In the second one, our group confirmed the presence of a roton mode in the
excitation spectrum, which resembles the one observed in superfluid helium and connects
to the tendency of the system to crystallize [Cho18]. In this work, a cigar-shaped geometry
confines the atoms, and an external magnetic field aligns the dipoles along the radial direction
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of the cigar. To excite the roton mode, the system is quenched into a dipolar-dominated
regime.

By combining the knowledge developed over the years on quantum fluctuations and the
roton mode, in this thesis, we explore the quantum phase transition from a BEC to a new
fascinating state of matter: the supersolid [B1̈9a, Tan19b, Cho19]. In this phase, the atoms
exhibit intriguing properties. The density shows a spontaneous modulation like in a crystal,
but the atoms can tunnel between different lattice sites without viscosity like in a superfluid.
In this thesis we address the problem: Can a dipolar supersolid state be stable? To answer
this question, we identify both theoretically and experimentally the parameter regime in
which the supersolid state is the ground state of the system. We then investigate how
the two antithetical behaviors of crystal and superfluid reveal themselves after an external
perturbation.

Furthermore, to explore more exotic phases, we approach the study of dipolar physics in
reduced dimensions, by using a one-dimensional optical lattice to create an array of quasi-
2D planes. We use this confinement to trap our atoms and study their distribution in the
different lattice sites. We found that, if the onsite dipole-dipole interaction is on average
attractive, reducing the scattering length drives a localization of the atoms in a single lattice
site. We assess the role quantum fluctuations play in this geometry and discover a regime in
which kinetic energy and quantum fluctuations compete to stabilize the system, giving rise
to soliton or droplet solutions.

0.1 Thesis overview

This thesis covers fundamental research on dipolar Bose-Einstein condensates of erbium
atoms. The main results include:

� A study of the excitation spectrum of a dipolar Bose-Einstein condensate experimen-
tally confirming a roton minimum.

� The discovery of the dipolar supersolid state: a state with two spontaneously broken
symmetries, the translational and the gauge symmetry.

� A study of the excitation spectrum of a dipolar supersolid confirming the presence of
two branches associated to the two broken symmetries.

� The investigation of erbium atoms in one-dimensional lattice and the realization of a
transition to a state localized in a single lattice plane, driven purely by interactions.

These results are structured in next four chapters as follows:

Chapter 1 provides a description of the basic properties of erbium atoms and of the ERBIUM
experimental apparatus.
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Chapter 2 reviews the theoretical description used in this thesis and focuses on the first result:
the excitation spectrum of a dipolar BEC of erbium atoms in a wide range of interactions.

Chapter 3 focuses on supersolidity and includes three publications. In the first publication,
we determine the parameter regime in which our erbium cloud performs a transition to a
supersolid state. We present the ground-state phase diagram and discuss how to charaterize
the state. In the second publication, we study the excitation spectrum in the supersolid
regime, and identify two branches, relative to the superfluid and crystal nature of the state. In
the third one, we probe the superfluid tunneling between the density peaks of the supersolid
when crossing the phase transition in and out the insulated droplet regime. The latter
corresponds to a state in which the crystal nature persists, while the global phase coherence
of the state is lost.

Chapter 4 approaches the investigation of dipolar gases in reduced dimensions. In this
study the system is trapped in an array of quasi two-dimensional planes, with an on average
attractive onsite dipolar interactions. We found the localization to a single lattice site when
reducing the interactions and discover that the competition between the kinetic term and
the interactions terms provide a rich phase diagram, with solitonic and droplet solutions.

0.2 List of publications

The following list contains the publications that form the main part of this thesis. They are
given in chronological order, which also reflects the thematic framework of the chapters.

� Probing the roton excitation spectrum of a stable dipolar Bose gas.
D. Petter, G. Natale, R. M. W. van Bijnen, A. Patscheider, M. J. Mark, L. Chomaz,
F. Ferlaino,
Physical Review Letters, 122, 183401 (2019).

� Long-lived and transient supersolid behaviors in dipolar quantum gases.
L. Chomaz, D. Petter, P. Ilzhöfer, G. Natale, A. Trautmann, C. Politi, G. Durastante,
R. M. W. van Bijnen, A. Patscheider, M. Sohmen, M. J. Mark, F. Ferlaino,
Physical Review X, 9, 021012 (2019).

� Excitation spectrum of a trapped dipolar supersolid and its experimental
evidence.
G. Natale, R. M. W. van Bijnen, A. Patscheider, D. Petter, M. J. Mark, L. Chomaz,
F. Ferlaino,
Physical Review Letters 123, 050402 (2019).

� Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar
atoms.
P. Ilzhöfer, M. Sohmen, G. Durastante, C. Politi, A. Trautmann, G. Natale, G. Morpurgo,
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T. Giamarchi, L. Chomaz, M. J. Mark, F. Ferlaino,
Nature Physics, 17, 356-361, (2021).

� Bloch oscillations and matter-wave localization of a dipolar quantum gas in
a one-dimensional lattice.
G. Natale, T. Bland, S. Gschwendtner, L. Lafforgue, D. S. Grün, A. Patscheider, M. J. Mark,
F. Ferlaino,
Communications Physics 5, 227 (2022).

In addition to the main publications, I also contributed extensively to a number of other
projects within the course of this work. These further publications are included in Chap-
ter 6.

Additional publications

� Realization of a Strongly Interacting Fermi Gas of Dipolar Atoms.
S. Baier, D. Petter, J. H. Becher, A. Patscheider, G. Natale, L. Chomaz, M. J. Mark,
F. Ferlaino,
Physical Review Letters 121, 093602 (2018).

� Bragg scattering of an ultracold dipolar gas across the phase transition from
Bose-Einstein condensate to supersolid in the free-particle regime.
D. Petter, A. Patscheider, G. Natale, M. J. Mark, M. Baranov, R. M. W. van Bijnen,
S. M. Roccuzzo, A. Recati, B. Blakie, D. Baillie, L. Chomaz, F. Ferlaino,
Physical Review A 104, L011302 (2021).

� Observation of a narrow inner-shell orbital transition in atomic erbium at
1299 nm.
A. Patscheider, B. Yang, G. Natale, D. Petter, L. Chomaz, M. J. Mark, G. Hovannesyan,
M. Lepers, and F. Ferlaino
Physical Review Research 3, 033256 (2021).

� Determination of the scattering length of erbium atoms.
A. Patscheider, L. Chomaz, G. Natale, D. Petter, M. J. Mark, S. Baier, B. Yang,
R. R. W. Wang, J. L. Bohn, F. Ferlaino
Phys. Rev. A 105, 063307 (2021).
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Ultracold erbium quantum gas

This chapter describes the basic properties of erbium atoms and the ERBIUM experimental
apparatus. Section 1.1 presents the electronic configuration and describes its resulting main
features: a magnetic moment in the ground state and a rich and complex energy spectrum.
Section 1.2 focuses on the ERBIUM experiment, with the aim of providing an overview of the
vacuum apparatus. Section 1.3 introduces the concept of phase-space density and explains
the steps necessary to reach the quantum degenerate regime. Finally, Sec. 1.4 illustrates the
Bragg-spectroscopy setup used to probe the excitation spectrum of the dipolar erbium gas,
and the one-dimensional optical lattice used to produce an array of quasi-2D clouds.

1.1 Erbium properties

Erbium (Er) is a rare-earth element, part of the lanthanides family. The attribute rare-earth
is connected to the geochemical properties and historical reasons rather than due to the abun-
dance. Er is naturally present in the earth’s crust with an abundance of 3.4 ppm [CRC04].
This value makes erbium at the 43rd position of the most common chemical elements on
the crust. It is more abundant than gold (0.004 ppm) and silver (0.075 ppm), but less abun-
dant than copper (60 ppm). However, the lanthanides are difficult to separate due to similar
chemical properties [Bal18]. Once Er is dissociated, there are six stable isotopes ranging in
atomic weight from 162 u to 170 u. Table 1.1 summarizes the relative abundances and the
quantum mechanical statistics for each isotope.

This thesis focuses on the most abundant isotope 166Er, but the ERBIUM machine can
bring to degeneracy also the other ones. The presence of several isotopes allows us to study
different regimes due to their different interaction properties [Pat22a]. Note also that the
experiment can study dipolar Fermi gases thanks to the high abundances of the fermionic
isotope.

7



8 1 Ultracold erbium quantum gas

Erbium isotopes

Isotopes natural abundance statistics

162Er 0.14 % bosonic

164Er 1.6 % bosonic

166Er 33.5 % bosonic

167Er 22.9 % fermionic

168Er 27.0 % bosonic

170Er 14.9 % bosonic

Table 1.1: Erbium isotopes, relative abundaces, and quantum mechanical statistics.

1.1.1 Electronic configuration

In the ground state, the electronic configuration of erbium reads:
(
1s22s22p63s23p63d104s24p64d105s25p6

)
4f126s2, 1.1

where the part inside the parenthesis corresponds to the noble gas xenon, and thus refers to
the inner-shell core electrons. In the outer shells, Er has 14 valence electrons. The 4f shell is
not complete, accommodating only 12 of the 14 possible electrons, while the 6s is completed.
This configuration, where the 4f shell is submerged [Jen91], i.e. lies energetically below the
6s shell, is common in rare-earth elements.

The open f-shell and the submerged electronic configuration give rise to primary character-
istics of erbium, first and foremost, the large magnetic dipole moment, µ, which leads to
long-range dipole-dipole interaction. According to Hund´s rule, the quantum numbers for
the ground state are S = 1 and L = 5. The LS coupling scheme provides the total angular
momentum quantum number J = L + S = 6; hence the ground state reads 3H6 in the
Russell-Saunders notation. Finally, the magnetic moment is given by:

µJ = −µB
ℏ

(gSS + gLL) , 1.2

since for bosonic isotopes the nuclear spin I = 0. Here, µB is the Bohr magneton, gS ≈
2.00232 and gL = 1 are the g-factors. The projection along the quantization axis (defined
by the direction of the magnetic field) is given by:

µ = −mJgJµB, 1.3

where gJ is the Landé g-factor, and mJ is the magnetic quantum number. Here, mJ can
assume the values in the range [−J ÷ J ]. Using the experimental value of the Landé g-
factor [Con63] gJ = 1.163801(1), the magnetic moment is:

µ = −6.982806(6)µB, 1.4

where we assume the atoms spin polarized in the lowest Zeeman sublevel [J = 6;mj = −6].
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Figure 1.1: Energy spectrum. Illustration of the energy levels according to their total angular
momentum quantum number J . The colors indicate the parity of the level, red (blue) for even (odd)
states. The arrows indicate the electronic transitions used in the experiment to cool, manipulate and
trap the erbium atoms. Adapted from Ref. [Pat22b]. Energy levels from Ref. [Ral11].

1.1.2 Energy spectrum

Another consequence of the electronic configuration is the multitude of optical transitions
available. They result from the possibility to excite an electron from both the 6s and the 4f
shell. Figure 1.1 illustrates the energy levels according to the NIST database [Ral11] up to
2.6× 10−4 cm. The arrows indicate the laser lights used in the ERBIUM experiment to ma-
nipulate the external and internal degrees of freedom. There is a forest of optical transitions,
whose linewidths range from around 30 MHz to 2 Hz. In particular, these two linewidths cor-
respond to the optical transitions with wavelengths 401 nm and 1299 nm, respectively, and
are good examples of the different types of transitions. The 401-nm line is a transition where
an electron from the outer shell 6s is excited in the 6p shell. We use this broad transition
for laser cooling and imaging; see later discussion. The 1299-nm line is a transition where an
electron from the 4f is excited in the 5d shell. In this case, both the shells are inner shells
shielded by the presence of 2 electrons in the 6s shell. Therefore, this is a narrow transition
used in our experiment for addressing the internal degrees of freedom, e.g., controlling the
population of the Zeeman sublevels [Pat21, Pat22b]. Finally, the other two arrows in Fig-
ure 1.1 indicate the 583-nm line and the 1064-nm light. We use the 583-nm line to create a
magneto-optical trap (MOT). The 1064-nm light is far detuned from any optical transition.
We use this laser light at high power (≈ 10 W) as an optical-dipole trap (ODT).
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Figure 1.2: Vacuum apparatus. Illustration of the vacuum parts of the ERBIUM experiment. It
is divided into two sections. The high vacuum section contains three modules: the high-temperature
oven, the transversal cooling module, and the pumping stage. The ultra-high vacuum section contains
four modules: the Zeeman slower, the main chamber, the second pumping stage, and the Zeeman
slower mirror. Figure from [Fri14].

1.2 Erbium experiment

The ERBIUM experiment brings erbium atoms to quantum degeneracy. In the case of
bosonic atoms, this condition requires trapping around 10 thousand atoms and cooling them
to about 100 nK, see discussion on phase-space density in Sec. 1.3. Reaching this condition
is impossible without isolating the atomic cloud from the environment. For this reason, the
atoms are located in an ultra-high vacuum chamber, where magnetic fields and laser beams
enable cooling and trapping. The experiment consists of the vacuum apparatus and the laser
systems. Fig. 1.2 illustrates the vacuum apparatus.

The first Bose-Einstein condensate of erbium was obtained in our experiment 10 years ago
in 2012. Over the years, there was no need to maintain or upgrade the vacuum apparatus,
except for the dual-filament high-temperature oven, which is used to generate the atomic
beam of erbium atoms1. However, during the work reported in this thesis, upgrades of
the laser systems were necessary in order to investigate unexplored directions and improve
the overall stability of the system. The following section provides a brief overview of the
experimental apparatus. More details can be found in the PhD thesis of Albert Frisch [Fri12].
As highlighted in Fig. 1.2, two sections constitute the apparatus.

The first one is a high-vacuum (HV) section. It consists of the high-temperature oven, the
transversal-cooling module, and the first pumping stage. The goal of the first section is to
provide a collimated atomic beam of erbium atoms. The first module is the commercial

1 One of the thermocouples of the oven broke after 5 years of operation. We, therefore, exchanged the oven
in 2020.
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diffusive dual-filament oven2. It consists of two regions: the effusion cell and the hot lip.
These two regions are heated up by two independent filaments. In the effusion-cell region,
small pieces of solid erbium (≈ 10 g) are stored and heated up to 1100 ◦C to efficiently
evaporate Er atoms3. The hot-lip region consists of a series of apertures that collimate
the atomic flux. This region is heated up to a higher temperature (1200 ◦C) to avoid the
accumulation of erbium that could lead to occlusion. From the operating oven temperature
and the erbium mass, one can estimate the speed of the atomic beam4 voven ≈ 450 m s−1. The
second module is the transversal cooling section. This aims at further collimate the atomic
beam. In this section, two retro-reflected laser beams operating at 401 nm create a 2D optical
molasses. Finally, the last module of the high-vacuum section is the pumping stage. This
module has three main aims. The first is to connect two ion pumps for maintaining the
experiment under HV. The second aim is to have the possibility to separate this part from
the UHV section via a metal valve, e.g, for refilling the oven. Finally, a differential pumping
tube connects this HV section to the UHV avoiding pressure equilibration between the two
sections.

The second section instead is in ultra-high vacuum (UHV). It consists of the Zeeman slower
(ZS), the main chamber, the second pumping stage, and a movable ZS mirror. The Zeeman
slower reduces the longitudinal velocity of the atoms using radiative pressure from a 401-nm
laser beam counterpropagating to the atomic beam. The broad linewidth combined with the
small wavelength makes this transition ideal. The broad linewidth ensures a good number of
absorption and spontaneous emission cycles, while the small wavelength ensures adequately
recoil in each absorption. The idea is to reduce the velocity up to the capture velocity of the
narrow-line magneto-optical trap operating at 583 nm. The latter linewidth is ∆ν = 190 kHz,
which results in a capture velocity of vcapture ≈ 5 m s−1. The ZS is an increasing-field spin-
flip design with a length of 36 cm. This spin-flip design compensates the space-dependent
Doppler shift with an inhomogeneous low magnetic field. An interesting difference compared
to standard Zeeman slowers design is the presence of a tunable bias field that can optimize
the capture velocity of the ZS. After the Zeeman slower, we trap the atoms in the main
chamber. As already mentioned, the magneto-optical trap operating on the 583-nm provides
the first trap. The combination of the large mass of erbium atoms and the narrow line gives
rise to two benefits. First, the sample is automatically spin-polarized in the lowest Zeeman
sublevel. Second, the optical setup needs only five beams, leaving the vertical viewport of
the main chamber free for optical access. In fact, since the gravitational force is on the same
order of the confinement force, the atoms favour the absorption of the beam propagating
against gravity. In our case, the polarization of the beam is σ−, and the MOT provides a
pure sample in the lowest Zeeman level. The free space due to the unnecessary sixth-MOT
beam, gives us the possibility to have simultaneously: an optical-dipole trap (see Sec. 1.3), a
DMD setup (see Sec. 2.5), an optical lattice (see Chap. 4), and vertical imaging (See. [Fri12]).
In the future, we plan to use this space for high-resolution imaging (see outlook in Chap. 5).
The main elements of the last two modules are the ion pump for maintaining this section

2 The master thesis from Johannes Schindler [Sch11] provides more details on the commercial oven model:
DFC-40-10-WK-2B with control unit CU-3504-S2-DC from CreaTec Fischer & Co. GmbH.

3 Note the melting point for Er atoms is 1529 ◦C.
4 The velocity of the atoms out of the oven follows a Maxwell-Boltzmann distribution, see Refs. [Chi08, Fri12].

The maximum velocity of the distribution is given by
√

3kBT
m

. Here, kB is the Boltzmann constant, m is

the mass of erbium and T is the temperature.
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under UHV and an aluminum mirror for the Zeeman slower beam. This mirror is essential
since using the standard setup of a beam in transmission over a viewport would lead to
decreasing efficiency over time. In fact, the viewport would get coated with atoms, and the
high melting point of erbium atoms would not allow to remove the coating by heating the
viewport. This design does not block the mirror from getting coated with erbium atoms, but
since the mirror works in reflection, the coating will only partially reduce the performance
of the mirror.

1.3 Quantum degeneracy

This section briefly explains the optical-dipole-trap setup and the evaporative cooling to
reach a quantum degenerate sample. The degeneracy conditions require that the distance
between the particle is on the same order of the extension of the wave packet. For this
reason, the temperature and the atom number alone does not directly tell how close the
system is to the degeneracy condition. A better quantity is the phase-space density (PSD).

It is defined as the product of the peak density n0 = Nω̄3
(

m
2πkBT

) 3
2
, where m is the atomic

mass, and the de Broglie wavelength λdB = h/
√

2πmkBT :

PSD = Nω̄3

(
ℏ
kBT

)3

. 1.5

Here, N is the atom number, ω̄ the geometrical mean trap frequency, and ℏ and kB the
reduced Planck and the Boltzmann constant, respectively. One reaches the Bose-Einstein
condensation threshold when this quantity is on the order of unity [Pet02]. In cold-atom
experiments, it is a standard technique to trap the atoms in an optical-dipole trap and rely on
evaporative cooling to reach this regime. The optical-dipole trap in the ERBIUM experiment
consists of two crossing 1064-nm beams, one propagating in the horizontal direction and one
in the vertical direction. We load the atoms from the MOT by switching on the horizontal
beam 300 ms before switching off the MOT. This beam has a waist of about 20 µm, but a
tunable aspect ratio. The latter is obtained via a time-averaged potential by scanning the
modulation frequency of an acousto-optic modulator (AOM). This technique is extensively
used in our group and explained in the master theses of Simon Baier [Bai12] and Claudia
Politi [Pol17]. The vertical beam instead has a bigger waist of ≈ 100 µm and prevents the
atoms from escaping the trap from the direction of propagation of the horizontal beam.
After loading the sample in the optical trap, the depth of the potential is reduced stepwise
to perform evaporative cooling. The basic idea is to permit the hottest atoms to escape and
subsequentially allow the remaining sample to rethermalize via elastic collisions to a lower
temperature. For this reason, not only the trapping potential should be carefully chosen for
each step, but also the scattering cross-section.

In the case of bosonic erbium, the interaction potential between two atoms separated by
the distance r has two contributions, the van der Waals interactions and the long-range
dipole-dipole interactions (DDI):
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U(r) = UvdW(r) + Udd(r). 1.6

At low temperatures, the typical momentum of the atom k ≪ 2π/R, where R is the range
of the interaction. In this limit, a pseudopotential fully described by a single parameter, the
scattering length as, can approximate the van der Waals term. Therefore, the interaction
potential reads:

U (r) = gδ (r) +
Cdd

4π

(
1 − 3 cos2 θ

|r|3
)
. 1.7

Here, the first term represents the short-range and isotropic contact interaction, where g =
4πℏ2as

m . The sign of as determines if the interaction is repulsive (as > 0) or attractive (as < 0).
The second term is the dipole-dipole potential in the case of an external magnetic field. In
this case, the dipoles align themselves in the direction of the field. Here, Cdd = µ0µ

2,
where µ0 is the vacuum magnetic permeability. The many-body phase emerging from the
competition between these two interaction terms is the core result of this thesis.

1.4 The Bragg-spectroscopy setup and the 1D optical lattice

This section aims to illustrate two principal optical setups for this thesis: the Bragg-
spectroscopy setup and the one-dimensional optical lattice. Fig. 1.3 illustrates the optical
setups and their integration in the ERBIUM experiment, together with the vertical ODT
and imaging setup. For simplicity, the sketch does not show the vertical MOT light beam.
As already highlighted in the previous section, our MOT consists of only five beams. It
allows us to use the upper vertical viewport to study the excitation spectrum of ultracold
erbium atoms via Bragg spectroscopy and to load the atoms in a 1D optical lattice.

We use the Bragg-spectroscopy setup to study the excitation spectrum of a dipolar BEC from
the regime where the contact interactions dominate to the regime where the predominant
interaction is the DDI, see Chap. 2. The idea is to use a digital micromirror device (DMD) to
create a moving lattice. In a DMD, the mirrors can assume two different positions. Hence,
it allows the drawing of arbitrary potentials. In our case, the setup begins with a beam
sampler to monitor and stabilize the intensity of the light. Afterward, a telescope creates
an elliptic beam to cover the area of the DMD, where we project a grating to generate two
beams propagating with an angle. The combination of a lens and an iris removes unwanted
orders. Finally, the two beams interfere at the atoms positions, thanks to the last lens. We
use this setup with the 401-nm light, but the design allows the use of the 532-nm light.
The reason for this double-wavelength design relies on the low-power efficiency of the setup.
Working close to the 401-nm line can guarantee a high enough polarizability. However, this
comes with the drawback of higher heating, where working further detuned via a 532-nm
laser could help. Nevertheless, we found a good spot by working at a detuning of 71 GHz
from the 401-nm transition, see Sec. 2.5 and Refs. [Pet19, Pet20].

The vertical-lattice setup aims to confine the atoms in an array of pancakes. The combi-
nation of this setup with the other two horizontal lattices creates a 3D optical lattice, see
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Figure 1.3: Optical setups. Sketch of the optical setups in the ERBIUM experiment. The left
side shows the Bragg-spectroscopy setup. The right side shows the vertical ODT and the vertical
optical lattice. The central part of the figure shows an illustration of the main chamber and how
the different laser beams are combined onto the atoms from the vertical viewports. Figure adapted
from [Fri12].

Refs. [Bai16a, Bai18, Pat20]. In this thesis, we combine the vertical-lattice with the optical
dipole traps to create quasi-2D elongated layers. For this setup, we recycle the power from
the zero order of an AOM of the horizontally propagating ODT. This light is fiber-coupled
and sent to a breadboard above the main chamber. After the fiber, a polarizing beam split-
ter cleans the polarization, and a 1:2 telescope enlarges the beam waist. We use the leaking
light transmitted from a mirror to monitor and stabilize the power. Finally, a lens focuses
the beam onto the atoms, and a mirror reflects the light back to create the optical lattice.

The simultaneous presence along the vertical direction of the Bragg spectroscopy, ODT
light, imaging light, and lattice beam requires some compromises, such as for example the
necessity of having laser beams propagating at different angles with respect to gravity. In
particular, the imaging beam propagating at ≈ 15◦ with respect to the gravity axis has the
largest inclination. Also, the lattice beams have an angle of 9(1)◦ compared to the gravity
axis. This angle limits the Bloch oscillation observation time, see Chap. 4.2 and Ref. [Nat22].
Regarding the Bragg-spectroscopy setup, the size of the final lens determines the maximum
momentum imparted on the atoms. The presence of the other optical setups compromises
the size of this lens. Finally, the biggest drawback comes from the numerical aperture of the
objective, which is about 0.08, limiting the resolution of the vertical imaging.
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2
Excitation spectrum of an
unmodulated dipolar BEC

This chapter has two main goals. The first one is to give an overview of the theoretical
approach used in this thesis to describe the physics of an ultracold dipolar Bose-Einstein
condensate (dBEC). The second one is to report, from theory and experiments, the obser-
vation of the excitation spectrum of a dBEC manifesting a maxon and a roton mode.

Sec. 2.1 introduces the Hamiltonian for dilute trapped quantum gases and discusses the ap-
proximations necessary to write the mean-field Gross-Pitaevskii equation (GPE). Section 2.2
uses the GPE to calculate the excitation spectrum of the system, which is fundamental to
understand how the system responds to an external perturbation. Furthermore, it intro-
duces the roton mode and highlights its characteristics. A key concept that emerges for
importance in the context of a dipolar BEC is quantum fluctuation. In particular, Sec. 2.3
introduces the first-order correction to the mean-field GPE: the Lee-Huang-Yang term. We
will discuss in which condition this term plays a fundamental role in determining the stability
of the system and the formation of novel quantum phases. Section 2.4 focuses on the effect
of finite temperatures, introducing the Wigner approach. Section 2.5 introduces the Bragg
spectroscopy technique. Finally, Sec. 2.6 shows the publication, in which our group studied
the excitation spectrum of dipolar erbium atoms via Bragg spectroscopy for a broad range
of interactions.

2.1 Gross-Pitaevskii equation

The Bose-Einstein condensation in atomic-gases experiment is a phenomenon achieved by
cooling identical bosons trapped in an external potential below a critical temperature. This
section introduces the typical theoretical framework used to study BECs. Before starting,
it is useful to remind the experimental conditions for BECs. Let us consider, for example,
our experiment where we daily produce a BEC of erbium atoms, in a cigar-shaped trap
with frequencies ωi about ωx,y,z ≈ 2π × (150, 30, 150)Hz. The condensate temperature is

15
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around 50 nK and we achieve around 1×105 atoms trapped in a volume of 50 µm3. Table 2.1
summarizes these parameters. Note, in particular, the finite system size, atom number and

Experimental parameters

Temperature 50 nK Density 2 × 1015 cm−3

Trapping frequencies ωx,y,z = 2π × (150, 30, 150)Hz Trapping volume 50 µm3

Table 2.1: Typical experimental parameters for a BEC of erbium atoms investigated in this thesis.

temperature modify the fundamental concept of BEC derived in the thermodynamic limit.
Here, we will only discuss some of the consequences of finite system size and temperature
necessary to explain the results presented in this thesis, but for a more detailed discussion,
see Refs. [Pit16, Pro13].

Our starting point is a system of N interacting bosonic atoms at zero temperature. The
influence of finite temperature is described in brief in Sec. 2.4. At low density, the interactions
between more than two atoms can be neglected leading to the following Hamiltonian:

H =
N∑

i=1

[
p⃗2i
2m

+ Vtrap (x⃗i)

]
+

1

2

∑

i

∑

j ̸=i

V (x⃗i − x⃗j) . 2.8

Here, the first term represents the kinetic energy with the momentum p and mass m of an
erbium atom. The second term accounts for the trapping potential at the position of the
individual atoms. Finally, the last term includes the two-body interaction. The system is
weakly interacting. This aspect becomes clear when comparing the two relevant length scales:
the interparticle spacing d and the interaction lengths (as, add). Considering the density n
of our BEC, n ≈ 1015 cm−3, the interparticle spacing d can be calculated as d = n−1/3.
In the work presented in this thesis, the scattering length is changed in the range as =
[50 − 100] a0 ≃ [2 − 5] nm. For these conditions, the dilute requirement as

d ≪ 1 → na3s ≪ 1
is satisfied.

The presence of the interaction term gives rise to quantum depletion [Bog47]. The depletion
means that even at zero temperature not all the atoms are in the ground state. Nevertheless,
the dilute condition allows us to consider the following mean-field approximation of the N -
body wavefunction:

Φ (r1, r2, . . . , rN ) ≈ ϕ (r1)ϕ (r2) · · ·ϕ (rN ) . 2.9

Note that while this is only an approximation in the interacting case, it becomes an equality
in absence of interactions.

We can now define the energy functional as:

E[Φ] = ⟨Φ|H|Φ⟩ =

∫
dr1 . . . drNΦ∗ (r1, r2, . . . , rN ) ĤΦ (r1, r2, . . . , rN ) . 2.10
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Minimizing this energy functional leads to the time-independent extended Gross-Pitaevskii
equation:

µΨ(x⃗, t) =

(
− ℏ2

2m
∇2 + Vharm (x⃗) + g|Ψ(x⃗, t)|2

+

∫
d3x⃗′Udd

(
x⃗− x⃗′

) ∣∣Ψ
(
x⃗′, t

)∣∣2 + γQF|Ψ(x⃗, t)|3
)

Ψ(x⃗, t),

2.11

where Ψ =
√
NΦ and γQF is the beyond mean-field correction in the form introduced by

Lee-Huang-Yang (LHY) [Lee57, Hua57, Lim11, Lim12].

Once the ground-state wavefunction is known, the dynamics of the dBEC can be studied via
the time-dependent Gross–Pitaevskii equation:

iℏ
∂Ψ(r, t)

∂t
=

(
− ℏ2

2m
∇2 + Vharm (x⃗) + g|Ψ(x⃗, t)|2

+

∫
d3x⃗′Udd

(
x⃗− x⃗′

) ∣∣Ψ
(
x⃗′, t

)∣∣2 + γQF|Ψ(x⃗, t)|3
)

Ψ(r, t).

2.12

It is important to highlight that this expression is often also used to find the ground state
by using imaginary time evolution [Wic54].

2.2 Bogoliubov excitations

The method to calculate the elementary excitations is based on the Bogoliubov treatment of
the Gross-Pitaevskii equation, see e.g [Pit16]. The first step is to write the condensate wave-
function as the sum of the ground-state wavefunction Ψ0 and a small perturbation ηψ(r, t),
as follows:

Ψ(r, t) = Ψ0(r) + ηψ(r, t). 2.13

Here η ≪ 1. We can think about the small perturbation as a mode ”wavefunction” and in
this thesis we use this term for referring to ψ. The second step is to assume the following
decomposition for ψ:

ψ = e−iµt
(
u(r)e−iωt − v∗(r)eiωt

)
, 2.14

where u, v are the Bogoliubov amplitudes fulfilling the normalization conditions
∫
|u(r)|2 −

|v(r)|2dr = 1 and ε = ℏω is the eigenenergy of the mode.

Finally, when substituting this expression in the GPE equation (Eq. 2.11) and neglecting all
terms that scale as η2, we found two coupled differential equations, usually referred to as
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Figure 2.1: Bogoliubov amplitudes |u|2 and |v|2. Bogoliubov amplitudes |u|2 (|v|2) are plotted
in blue (green) as a function of the energy (a), and effective momentum (b) of the corresponding
modes. The black horizontal lines denote the single particle condition (|u|2 = 1; |v|2 = 0).

Bogoliubov-de Gennes (BdG) equations that can be written in a matrix form as follows

(
ĤGP [ψ0] +A −A

A −ĤGP [ψ0] −A

)(
u
v

)
= ε

(
u
v

)
. 2.15

Here, A is an operator that can be computed on a generic function f as follows:

(Af)(r) =

∫
d′ψ0

(
r′
)
U
(
r− r′

)
f
(
r′
)
ψ0(r)

+
16√
π
ga3/2s

(
1 +

3

2
ε2dd

)
|ψ0(r)|3 f(r).

2.16

This eigenvalue problem can be written in a diagonal form following Ref. [Ron06]. The
Bogoliubov amplitude u (v) gives the eigenmodes related to positive (negative) frequencies.
Figure. 2.1 shows the typical evolution of the Bogoliubov amplitudes as a function of the
energy (a) and momentum (b). For large wavelengths (low momenta), the v component
is not negligible, and these modes correspond to collective excitations. Instead, when the
wavelength is smaller than the healing length the response has to be attributed to the single
particle rather than to the whole condensate [Bog47, Ron06, Pit16].

In absence of harmonic confinements, the spectrum is a continuous function and, for each
energy, there is an associated momentum q∗. The wavefunction associated with a mode
has a characteristic density modulation 2π/q∗. Instead, the presence of a harmonic trap
discretizes the allowed energies and removes the possibility to describe the Bogoliubov mode
with a precise single momentum/wavelength. Even if it is still possible to associate to each
mode an effective momentum [Bis13], it turned out that the dynamic structure factor provides
a useful visualization of the spectrum.

Once the Bogoliubov amplitudes are known, the zero temperature dynamic structure factor
(S0) is computed as follows:
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S0
(
q, ω′) =

∑

l

∣∣∣∣
∫

dr [u∗(r) + v∗(r)] eiq·rψ0(r)

∣∣∣∣
2

δ (ω − ωl) . 2.17

S0 determines the density response of the system when probed with a small perturbation
at a specific momentum and energy. Note that to evaluate this quantity one needs to
compute both the ground-state wavefunction and the Bogoliubov modes. The dynamic
structure factor not only contains information about the energy and the wavefunction of all
the Bogoliubov modes but, as shown in Eq. 2.17, gives also the strength of the coupling with
the ground state.

2.2.1 A roton-maxon excitation spectrum

For understanding the properties of 4He, Landau introduced the concept of roton [Lan41].
This quasiparticle is responsible for a minimum in the energy spectrum at a finite momentum.
While the strong interparticle interactions are the ingredient for a roton in 4He, in the context
of dipolar gases, the responsible term is the dipole-dipole interaction and the roton exists
even in a dilute regime [San03]. Dipolar atoms presenting a roton spectrum were studied
theoretically mainly in pancake traps [San03, Ron07, Boh09, Bla12, JL13]. In this chapter
and for the results on supersolidity, we concentrate on a cigar geometry with the dipole
aligned along one of the tight axes of the trap.

We first focus on a regime of interactions where the ground state is a non-modulated BEC,
and we add a small population of a Bogoliuobov mode to understand the origin of the roton
mode in dipolar BECs. As we highlighted in the previous section, the wavefunction asso-
ciated with a Bogoliubov mode presents in real space a density modulation. Due to the
anisotropic nature, the effect of the DDI changes depending on the wavelength of the pop-
ulated mode. If one considers a mode at low momenta, the atoms in the excitation will be
aligned mainly side by side, giving rise to an additional repulsive contribution that stiffens
the energies of the mode. However, in the case of large momenta, the atoms experience
a head-to-tail alignment, that induces a softening of the modes. This picture can be ana-
lytically confirmed from Ref. [Bla20a, Bla20b, Pal20]. In these papers, the authors present
a variational model to describe an elongated cigar. The basic idea is to assume that the
wavefunction can be decomposed in a radial and axial part. It is then possible to find an an-
alytical approximation to describe the momentum space interaction along the axial direction
of the cigar. Fig. 2.2 (a,b) plots the effective interactions, which include only the mean-field
terms, for two different orientations of the magnetic field. The dipoles in Fig. 2.2(a) are
aligned along the axial direction of the trap, whereas in (b) along the radial direction.

Figure 2.2 contains informations of the ground state and of the excitation spectrum. In
particular, at q = 0 in Fig. 2.2(a), the contact and dipole-dipole interaction compensate each
other, whereas in Fig. 2.2(b) they sum up. As a consequence, in the first case the condensate
is weakly interacting and dense, while in Fig. 2.2(b) the interactions induce the size of the
ground state to increase. From the variational theory, it is possible to relate the effective
interaction Ũ also to the energy of the excitation spectrum via:
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Figure 2.2: Effective interactions and excitation spectrum for a cigar-shape configura-
tion. Effective interactions in the case of dipoles aligned along the axial (a) and along the radial (b)
direction of the cigar trap. The three colors (dark blue, light blue, green) represent three different
scattering lengths: [(75, 65, 55) a0]. The gray shaded area indicates attractive effective interactions.
(c,d) Excitation spectrum related to the effective interactions in (a,b).

Evar
qy =

√
ϵqy

[
ϵqy + 2nŨ (qy)

]
, 2.18

where ϵqy = ℏ2q2y/2m and n is the density. This equation is valid under the same shape
approximation, in which it is assumed that the radial profile of the modes has the same
shape of the condensate, see Ref. [Bai15].

Figure 2.2(c,d) show the excitation spectrum calculated from Eq.2.18, for the two different
orientations of the magnetic field. We observe that a negative (positive) value of the effective
interaction induces a softening (stiffening) of the energy spectrum. The negative effective
interactions at large momenta, which appears when the dipoles are aligned along the radial
direction, favour a roton excitation spectrum. The presence of the roton mode depends
on the competition between DDI and contact interactions. In fact, a negative contribution
of Ũ is present only for as < add, see different colors in Fig 2.2. Note that the excitation
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Figure 2.3: Energy and momentum evolution of the roton mode with as. (a) Energy
evolution of the roton mode as a function of as. (b) Momentum evolution of the roton mode as a
function of as. The three colors (gray, orange, light blue) represent three different trapping potential
(νx, νy, νz)=[(150, 30, 150) Hz; (300, 30, 300) Hz; (450, 30, 450) Hz], respectively.

spectrum in Fig 2.2(c), calculated from Eq. 2.18, reproduces well the real one only for low
momenta [Pal20]. For this orientation of the magnetic field, the spectrum shows a novel
multi-band behaviour [Pal20] that will be investigated in future publications.

To gain further understanding of the roton mode, Fig. 2.3 shows the evolution of the energy
and momentum of the roton mode with as following ref. [Cho18]. The calculations are done
for three different trapping potentials to underline the role of the radial trap. Fig. 2.3 (a),
displays the softening of the roton mode. Note that the maxon energy is around 0.5νz, hence
only if the energy is below this value there is a real minimum in the energy spectrum. This
highlights that a maxon-roton energy spectrum is only present for few a0. Fig. 2.3 (b) shows
another important characteristic of the roton mode in dBEC: the tunability with the trapping
potential and with the scattering length. In the figure, it is interesting to note that a softening
of the roton mode happens always at the same value of krot lz (this happens at different values
of as for the different trapping potentials), underlining its universal geometrical scaling.

The analytical models used so far simplify the computations and the understanding of the
dipolar roton physics, but do not fully account for the finite system size. Therefore, following
Sec. 2.2, we can compute the Bogoliubov amplitudes without additional approximations.
Fig. 2.4 plots the associated mode wavefunction for a few selected modes and visualizes
the spectrum by plotting the dynamic structure factor as a color shading. The finite size
system reveals itself via a discrete spectrum where it is not correct to associate a precise
momentum to a mode. This is particularly the case for some modes, e.g. Fig. 2.4 (e,f)
where the same mode has a response in a broad and not continuous range of momenta. An
interesting question is how the roton wavefunction looks and compares with the other modes
of the spectum. Fig. 2.4 answers this question by comparing different modes. It highlights
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Figure 2.4: Energy spectrum, ground state, and excited modes. (a, c, e, g) The dashed
line shows the integrated density of the ground state, whereas the green line shows the wavefunction
of an excited mode. (b, d, f, h) The color shading represents the dynamic structure factor. The
modes selected in the upper panels are highlighted in blue. Trapping frequencies, scattering length,
and atom numbers are: ωx,y,z = 2π × (160, 31, 250) Hz, as = 51.2a0, N = 5 × 104.

(Fig. 2.4(a-d)) that in the spectrum there are two degenerate roton modes. Interestingly,
they are localized at the center of the trap. This contrasts with respect to the phonon
and the single-particle excitations (Fig. 2.4(g,h) at high momenta, where the wavefunction
is delocalized over the condensate (dashed line (Fig. 2.4(a,c,e,g))).

Finally, the presence of the roton mode results in a peak of the structure factor. The dynamic
structure factor needs to satisfy the following sum rule [Str16]

ℏ2
∫ ∞

−∞
dω S(q, ω)ω =

Nℏ2q2

2m
. 2.19

This sum rule is general and its validity does not depend on the interaction potential. For
various scattering lengths, the roton mode changes energy according to Fig. 2.3(a). If one
neglects the variation of the roton momentum when changing the scattering length (this does
not qualitatively change the result), then the softening of the roton mode directly results in
an increase of the structure factor, which diverges when the roton mode fully softens. This
gives rise to a stronger response of the system to a perturbation like Bragg spectroscopy.
This aspect is also experimentally measured in Fig. 4 of the publication in Sec. 2.6.

2.2.2 Quantum depletion

The quantum depletion is an effect of interactions. As described in Sec. 2.1, one of the
assumption necessary to derive the GPE is a state with negligible quantum depletion. Due
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to the dilute nature of the condensate, this condition is usually satisfied. Nevertheless, many
of the novel dipolar phases studied in this thesis are characterized by a higher density than a
standard BEC. It is for this reason important to check the amount of depleted atoms. This
is possible if the Bogoliubov amplitudes u, v are known thanks to the following relation:

Ñ =

∫
dr
∑

j

|vj(r)|2 . 2.20

Note that all modes with momenta ky ≤ ℏ/ξ are necessary to converge the sum in Eq. 2.20.
In fact, |vj(r)|2 ≈ 1 for modes with momenta ky ≈ ℏ/ξ, where ξ is the healing length, and
rapidly decays to |vj(r)|2 ≈ 0 at larger momenta.

2.3 Quantum fluctuations

In the context of dipolar ultracold atoms, quantum fluctuations are usually associated to the
first-order beyond mean-field correction to the energy functional. This term is fundamental
to describe the experimental discoveries of different stable quantum phases of dBEC that are
in a regime where the mean-field picture predicts a collapse. This correction reads [Lim11,
Lim12]

E0

V
=

1

2
gn2

[
1 +

128

15
√
π

√
na3F (ϵdd)

]
, 2.21

where

F (ϵdd) =
1

2

∫ π

0
dθ sin θ

[
1 + ϵdd

(
3 cos2 θ − 1

)] 5
2 . 2.22

It is important to highlight a few aspects of this correction. First, this correction scales
with the density with a higher power compared to the mean-field term. Additionally, it is a
repulsive contribution, hence can stabilize the system against a collapse.

The effect of this term was measured in the pioneering experiment [Alt07], where a shift in the
excitation frequencies, in agreement with Monte Carlo simulations, was found for a strongly
interacting degenerate gas of 6Li atoms in the lowest two internal states. Other remarkable
approaches to highlight the LHY contribution were: the use of a Feshbach resonance to
enter the strongly interacting regime with 85Rb [Pap08]; the use of an optical lattice to
enhance the atomic interactions [Xu06]; the careful analysis and measurement of the density
profile [Shi08, Nav10]. Nevertheless, the influence of this term was never highlighted and
measured in the condition of small mean-field interactions. It is relevant to note that there are
two regimes in which this correction term becomes important, strongly interacting gases or in
a dilute system when the mean-field interactions are small. The last regime, in single species
experiment, can not be reached by simply reducing the contact interaction since also the LHY
correction gets null at zero scattering length. For this reason, a dipolar gas, where small
mean-field contributions can be obtained by competing dipole-dipole and contact interaction
is an interesting platform to exploit this term for realizing novel states. However, the first
predicted manifestation of this quantum mechanical stabilization mechanism was for a Bose-
Bose mixture. Also in this system, it is possible to exploit the three contact-interaction
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terms (two single species and one intra-species) to reduce the mean-field interaction at a
finite scattering length. In Ref. [Pet15], Petrov shows that in a regime where the mean-
field theory predicts a collapse, introducing this term in the Hamiltonian provides a stable
self-bound solution: the droplet state. This state was observed in Bose-Bose mixtures in
Refs. [Cab18, Sem18] and also with dipolar atoms, where depending on the trap geometry
and the direction of the dipoles it was possible to find single or multi-droplet solutions (in
theoretical works, see Refs. [W1̈6a, Bis16, Bai16b] and experiments, see Refs. [Kad16, Cho16,
FB16]).

It is then natural to ask whether the dipolar multi-droplets state was a supersolid state. In
such a state, one expects the system to have a crystal structure while being superfluid. Such
a paradigmatic state is a primary investigation of this thesis, and Chapter 3 explains the
properties and the regime in which such a state exists.

Finally, it is important to highlight that to obtain Eq. 2.21 one needs different assumptions.
Together with the one already used to derive the Gross-Pitaevskii equation, one needs to use
the Local-Density Approximation (LDA). Additionally, the LHY term has an imaginary part
for ϵdd > 1 that is neglected in the theoretical simulations. For this reason, in many works in
this thesis, there is a quantitative comparison of the experimental and theoretical results. We
found that for different trapping geometries and states the level of agreements is different.
The importance of this term is indisputable, but its exact form needs further theoretical and
experimental effort, where other important effects like temperature [Bla21, SB22] are under
control.

2.4 Finite temperature and non-equilibrium dynamics

This section introduces the Wigner approach to consider finite temperatures in our simula-
tions. The method here reported shows good agreement with the observable studied in the
experiment [Pet21]. Nevertheless, a comprehensive summary of the correct approach to simu-
late different observables at finite temperatures and studying non-equilibrium dynamics goes
beyond the aim of the current thesis and for that, we refer the reader to e.g., [Bla08, Pro08].
In our experiment, the typical conditions after the evaporation are states with a temperature
ranging from 50 to 100 nK and BEC fraction ranging from 50 to 80 %.

In brief, the simulations at finite temperature start by finding the ground state and cal-
culating the excitation spectrum, as detailed in the previous section. The next step is to
randomly seed the ground state with vacuum noise and thermal fluctuations according to
the truncated Wigner prescription. We finally time evolve these states according to Eq. 2.12.
Similarly to a real experiment, where it is important to repeat the same sequence to get
a significant statistic, also for the truncated Wigner approach, it is important to repeat
the same simulation with different initial seeds, where the number necessary to reach the
convergence depends on the observable.

In more detail, once the excitation spectrum is known, we consider only the modes with
energy below 4KBT . From the Bogoliubov amplitudes u, v of these modes, we generate the
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wavefunction ΨT associated with the vacuum and thermal noise as follows:

ΨT = βjuj + β∗j v
∗
j . 2.23

The coefficient βj is given by:

βj =
√
n̄j + 1/2

(
xj + iyj√

2

)
, 2.24

where n̄j = 1

eϵj/kBT−1
. Here, ϵj is the energy of the mode j, T is the temperature and

xj , yj are randomly distributed Gaussian variables, satisfying the following conditions on the
average and variance: < xj >= 0, var(xj) = 1. The final wavefunction is then obtained
from the sum of the ground state Ψ0 at T=0 by Ψ = Ψ0 + ΨT .

The wavefunction is then time evolved according to Eq. 2.11. The validity of these simulations
tends to decrease the further from equilibrium the system is, and the longer the time scales
needed to follow the dynamics.

2.5 Bragg spectroscopy

Atomic interferometers are a famous application of Bragg scattering, where atomic sam-
ples are manipulated via light grating. They have been used to improve the knowledge
of fundamental quantities from the gravitational constant [Tin21] to the fine-structure con-
stant [Cla06, Mor20], or to create quantum sensors, ranging from highly accurate gyroscopes
[Fan12] used e.g., for accurate navigation of aircraft and submarines but also missiles, to
gravity gradient sensor [Str22] e.g., for climate research [Tay13]. In this section, we intro-
duce the technique of Bragg spectroscopy, to study the intrinsic properties of the condensate.
In the breakthrough experiments at NIST and MIT [Ste99, SK99], this technique was ex-
ploited to determine the dynamic structure factor of the condensate for a specific wave vector
k. In this section and in the next one, this technique is used to study the excitation spectrum
of a dBEC.

Bragg-spectroscopy experiments in ultracold atoms rely on the interference of two laser beams
with wave vector k1 and k2 and a frequency difference δω. The difference in the wavevector
creates an interference lattice potential of the form V0 cos(qx− ωt), with q = k1 − k2. The
frequency difference makes the interference pattern move with a constant velocity. This
velocity translates into the energy of the perturbation, whereas the momentum is given by
q. Finally, the absolute frequency of the laser beams controls the potential experienced by
the atoms due to the AC-Stark shift.

In the experiments, the Bragg potential is projected on the atoms, with a square pulse of
duration τ . This results in a population of the Bogoliubov modes. The excited fraction
during the pulse can be calculated in the linear regime via perturbation theory:

|cl(t)|2 = V 2
0

∣∣∣∣
∫

dr [u∗(r) + v∗(r)] eiq·rψ0(r)

∣∣∣∣
2

t
sin2 [(El/ℏ− ω) t/2]

ℏ2 (El/ℏ− ω)2
, 2.25
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where Ei is the energy of the Bogoliubov mode. This expression can be related to S0 from
Eq. 2.17. More precisely, it is a Fourier-broadened version of S0, where the resonant energies
do not change but get broadened:

S̃0(q, ω) =
∑

l

∣∣∣∣
∫

dr [u∗(r) + v∗(r)] eiq·rψ0(r)

∣∣∣∣
2

τ sinc2 (| τ (ω − ωl) /2) . 2.26

The duration of the pulse must be carefully chosen. There are five aspects to take into
account. First, there is an intrinsic finite lifetime of the quasiparticle due to the damping
process e.g., Landau and Beliaev damping [Gio98]. In these processes there is redistribution
of the mode energy and momentum, however, energy conservation usually suppresses these
processes for trapped systems due to the discretization of the energies and particularly if the
spectrum presents a roton minimum. Second, from Eq. 2.25, the pulse duration changes the
population of the excited modes. This depends also on the detuning and the intensity, which
are two preferable knobs to obtain the wanted modes population. Third, from Eq. 2.26, to
reduce the Fourier broadening is necessary to increase the pulse duration. Fourth, the pulse
needs to be shorter than the quarter period of the trap (T/4), after which the coherent
Bragg diffraction is lost, since atoms scattered at the beginning of the pulse come to rest.
Finally, the pulse time should always be short compared to the lifetime of the state. This
last condition becomes particularly relevant when probing states like supersolids and droplets
for which the high density and the vicinity of the magnetic field to the Feshbach resonance
induce usually a short lifetime of the sample. In our experimental regime, the shortest time
scale is given by the axial trapping frequency (Bragg spectroscopy direction), which is usually
about 30 Hz, limiting the pulse duration to 7 ms.

To compare the experimental observable to S̃0 from the theoretical ground state, it is neces-
sary to satisfy the validity conditions based on the linear regime. The linear regime requires
achieving at the end of the Bragg pulse only a small transfer of population to the Bogoliubov
modes such that: ∑

i ̸=0

|ci (Tp)|2 ≪ 1, 2.27

where ci are the population of the i-excited modes. In this regime, the sum of the population
ci of all the excited modes has to be much smaller than unity. In fact, Eq. 2.25 is obtained
neglecting the interactions of the excited part. The natural experimental drawback is that,
if only a small percentage of the atoms are excited, extracting their population becomes
challenging. Bragg scattering beyond the linear regime changes the measured response after
the excitation [Bla02]. For this reason it is possible to test the linear regime by measuring
the excited fraction for different laser power. A deviation from a simple scaling with V 2

0

demonstrates to be outside of the regime. After testing this regime in various measurements,
we found that a population of ≈ 10% of excited atoms at the end of the Bragg pulse is a good
compromise. Note that for different wavevector q of the Bragg potential such condition is not
the same. It is therefore important that for each measurement the potential V0 is adjusted
to reach the linear regime. Once the pulse duration is chosen, intensity and detuning are the
knob parameter to control the potential depth and limit the absorption rate.

The detuning of the Bragg beams control the heating induced in the sample. As for any
optical lattice the ideal condition is to use high intensity and large detuning to limit the ab-
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sorption induced by the imaginary part of the polarizability. Intensity is limited for different
reasons. First, the waist of the beams should be much larger than the system size, and sec-
ond the power is limited by the source and efficiency of the optical setup. In our experiment,
typical cloud sizes are on the order of 20 µm. For this reason, we use a beam waist of around
200 µm for the two Bragg beams. In this way, the potential can be consider uniform over the
cloud size. The optical setup is based on a digital micromirror device (DMD) to generate
the two interfering beams. More information about the setup can be found in Chap. 1.4 and
in Refs. [Pet19, Pet20]. This setup is very versatile and can be used to probe the system at
different energies and momenta without realigning the beams onto the atoms. One drawback
of this setup is the power efficiency. The idea is to use the DMD to create a tunable grating in
Fourier space. In this configuration only few mirrors are simultaneously on during the pulse,
reducing the power efficiency of the setup to below 1%. The potential depth of our Bragg
probe can be estimated via real-time simulations suggesting that, to achieve a population of
around 10%, V0 needs to be V0≈200 Hz. This potential is obtained by using all the available
power (50 mW before the DMD) for our Bragg beams at a detuning of 71(1) GHz from the
401-nm transition.
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2.6 Publication: Probing the roton excitation spectrum of a
stable dipolar Bose gas
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Wemeasure the excitation spectrum of a stable dipolar Bose-Einstein condensate over a wide momentum
range via Bragg spectroscopy. We precisely control the relative strength ϵdd of the dipolar to the contact
interactions and observe that the spectrum increasingly deviates from the linear phononic behavior for
increasing ϵdd. Reaching the dipolar-dominated regime ϵdd > 1, we observe the emergence of a roton
minimum in the spectrum and its softening towards instability.We characterize how the excitation energy and
the strength of the density-density correlations at the roton momentum vary with ϵdd. Our findings are in
excellent agreement with numerical calculations based on mean-field Bogoliubov theory. When including
beyond-mean-field corrections, in the form of a Lee-Huang-Yang potential, we observe a quantitative
deviation from the experiment, questioning the validity of such a description in the roton regime.
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The spectrum of elementary excitations is a key concept
providing insight into the quantum behavior of many-body
systems. An emblematic example is the one of superfluid
helium. At low momentum, the interactions among par-
ticles lead to collective-excitation modes with a linear
energy (ε)-momentum (q) dependence. Those are known as
phonons, highlighting their analogy to sound waves. In
addition, the strong interactions in He induce pronounced
correlations at the mean interparticle distance d. Such
correlations reveal themselves in an energy minimum in
the excitation spectrum at q ≈ 1=d, termed roton [1]. Its
physical interpretation, and even its mere existence, has
been intensively debated for decades [2]. In today’s under-
standing, the roton relates to the system’s tendency to
establish a crystalline order [3], possibly providing access
to supersolid phases [4]. Between the phonon and the roton,
a local energy maximum, termed maxon, appears.
For gaseous Bose-Einstein condensates (BECs),

the excitation spectrum also embeds the many-body inter-
acting behavior. In the weakly interacting bulk regime,
the excitation spectrum is well described within the
Bogoliubov theory and takes the form εðqÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðqÞ2 þ 2EðqÞV intðqÞ

p
, with EðqÞ ∝ q2 being the free-

particle energy and V intðqÞ being the mean-field interaction
energy contribution [5]. In the case of short-range (contact)
interactions, V int is independent of q and a roton minimum
is absent, as confirmed in experiments [6–10]. Deviations
from the Bogoliubov theory were observed in the strongly
interacting regime [11,12], yet a roton minimum has
remained elusive [13].
Quantum gases with dipole-dipole interactions (DDIs),

underlying a q dependence of V int, bring a paradigm shift in
themany-body behavior [14–18]. In particular, dipolarBECs

(DBECs) are predicted to support a roton mode in their
Bogoliubov spectrum [19,20]. This roton spectrum requires
specific conditions, namely, (i) an anisotropic geometry,
tighter along the dipole direction, and (ii) a dominant DDI
over the contact interaction. These conditions enable V int to
depend and change sign with q ¼ jqj, yielding a local
minimum in εðqÞ for q along the weak confinement axes.
Conditions (i) and (ii) also dictate the rotonmode’s character-
istics: its momentum qrot is governed by the confinement
length along the dipoles (i), and εðqrotÞ is controlled by the
ratio ϵdd ¼ add=as of the dipolar (add) and s-wave scattering
(as) lengths (ii). In particular, εðqrotÞ decreases (softens) for
increasing ϵdd and ultimately vanishes, yielding amean-field
instability. The existence of dipolar rotons has been dem-
onstrated in recent quench experiments, via the exponential
growth of the roton mode’s population when εðqrotÞ turns
imaginary, i.e., in the roton instability regime [21].
In this Letter, we directly probe the phonon-maxon-roton

excitation spectrum of a stable DBEC of ultracold erbium
atoms. By precisely controlling ϵdd (via as), we observe the
emergence of a roton minimum at large momentum and
study in detail its softening. Our spectroscopic approach is
based on the well-established technique of Bragg spectros-
copy [6–12,22–26]. For DBECs, this technique has been
previously applied on Cr in the regime of weak DDI [27],
proving the anisotropy of εðqÞ, and consequently of the
speed of sound, recently confirmed with a different
technique with Dy [28]. Bragg spectroscopy has also been
employed to observe rotonlike minima in the dispersion
relations of hybrid systems of short-range interacting atoms
and light [29–31].
Our Bragg spectroscopy is performed using a DBEC of

strongly magnetic 166Er atoms, prepared as in Refs. [17,21].
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After preparation, we confine the DBEC in a cigar-shaped
optical dipole trap with harmonic frequencies ωx;y;z ¼
2π × ð261; 27; 256Þ Hz. A homogeneous magnetic field
B maintains spin polarization of the sample in the lowest
Zeeman sublevel, with atomic dipoles aligned along z; see
Fig. 1(a). It also sets the value of as via a magnetic
Feshbach resonance (FR) [32], centered at about 0 G, for
which the B-to-as conversion has been precisely extracted
with a �2a0-wide prediction interval in the as range here
explored [17,21]. Systematic uncertainties on as are
estimated to be up to �3a0 [33]. The dipolar length,
add ¼ μ0μ

2m=12πℏ2 ¼ 65.5a0, results from the atomic
magnetic moment μ, and mass m of 166Er. μ0 is the vacuum
permeability and ℏ ¼ h=2π the reduced Planck constant.
After preparation, as equals 67a0, corresponding to
ϵdd ≈ 1. In this geometry, a roton mode is expected to
emerge along the axial (y) direction for ϵdd > 1 and softens
for increasing ϵdd. The roton minimum appears at a
momentum qrot ∼ 1=lz, with lz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωz

p
≈ 0.5 μm.

To reach ϵdd > 1, we decrease as to the desired value by
ramping B closer to the FR’s pole. The ramping time tr is
chosen to be long enough to ensure adiabaticity with

respect to the tight trapping frequencies (tr > 1=ωx;zÞ but
short enough to avoid too strong three-body collisional
losses near the FR. For the highest ϵdd, we find an optimal
trade-off for tr ¼ 15 ms, defining our fastest ramp. This
ramp is not fully adiabaticwith respect to the axial dynamics.
We observe small-amplitude breathing and sloshing modes
along y, which we account for in our spectroscopic mea-
surements [33]. After ramping B, we hold the atoms for a
time th, after whichwe performBragg spectroscopy to probe
the excitation spectrum of our DBEC of N atoms.
Our Bragg spectroscopy setup is illustrated in Fig. 1(a)

and detailed in Ref. [33]. In brief, it uses two coherent laser
beams of wave vector kL ¼ 2π=λL, with λL ¼ 401 nm,
propagating in the z-y plane and intersecting each other
under an angle θ. At the cloud’s position, the beams form a
light grating along y of potential depth V0 and wave vector
q ¼ 2kL sinðθ=2Þ. The two beams have a small frequency
difference ω, causing the grating to travel at a velocity ω=q.
A key feature of our setup is the wide dynamical tunability
of θ. This is obtained by creating the Bragg beams
using holographic gratings [33,35], generated with a
digital micromirror device [30]. By uploading different
holograms, we can vary θ, and accordingly q from 0 to
1.8l−1z . Moreover, by employing hologram sequences and
changing their display rate, ω can be directly varied, up to
∼2π × 1 kHz. In the experiment, we illuminate the DBEC
with a Bragg pulse of duration τ. The value of τ ¼ 7 ms is
chosen to be long enough to minimize Fourier broadening
of the frequency spectrum, and yet short with respect to a
quarter of the axial trap period [8,23,25]. Immediately after
the pulse, we switch off the trap and let the cloud expand
for 30 ms. We then image the atoms along z via standard
absorption imaging, from which we extract the momentum
distribution of the cloud, nðqx; qyÞ.
The Bragg excitation can be interpreted as a stimulated

two-photon transition, imparting a well-defined momentum
q and energy ℏω to the atoms; see Fig. 1(b). In bulk
systems, for a fixed q and varying ω, atoms, initially at
qy ¼ 0, are resonantly transferred to qy ¼ q for ℏω ¼ εðqÞ
[6–9]. When accounting for finite-size effects, the response
is broadened in q. The dynamic structure factor, which
quantifies the system’s response to an external perturbation,
can be related to the fraction of excited atoms during a
Bragg pulse,F ¼ Nexc=ðN0 þ NexcÞ. Here,N0 (Nexc) is the
number of the zero-momentum (Bragg-excited) atoms. In
the linear response regime [9,22,23],

F ¼ π2V2
0τ

h2
S̃0ðq;ωÞ; ð1Þ

where S̃0ðq;ωÞ is the zero-temperature dynamic structure
factor, Fourier broadened in ω due to the finite τ, see
Ref. [33].
Figure 1(c) shows a representative nðqx; qyÞ for a q ≳ l−1z

excitation. For this high q, the Bragg-excited atoms are well
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FIG. 1. (a) The DBEC (gray ellipsoid) is axially elongated along
y and the atomic dipoles point along z. Two Bragg beams of
frequency ωl and ωl − ω (blue arrows) form a traveling grating
along y with a wave vector q and velocity ω=q (blue shading).
(b) The Bragg excitation drives a stimulated two-photon transition
(dashed arrows), transferring a momentum q and an energy ℏω to
the atoms, resonant for ℏω ¼ εðqÞ (solid line). Δ ≫ ω is the
detuning from the intermediate state. (c) Example of nðqx; qyÞ
after a Bragg excitation with ðq; ωÞ ¼ ½1.74ð9Þl−1z ; 2π × 180 Hz�.
(d) Corresponding nðqyÞ (dots), fitted with a multi-Gauss function
(dashed line). The solid line shows the component of the fit
corresponding to the Bragg-excited atoms. (e) hq2yi vs ω for
q ¼ 0.74ð3Þl−1z . The solid line shows a Gaussian fit used for
extracting ωq and normalizing the data.
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resolved as a side peak. From a multi-Gauss fit to the
integrated density nðqyÞ, we extract F ; see Fig. 1(d) [33].
For q≲ l−1z , the zero-momentum peak and the Bragg-
excited one overlap andF cannot be precisely extracted. To
access S̃0ðq;ωÞ for all q, we use the momentum variance
hq2yi ¼

R
nðqyÞq2ydqy, which relates to the imparted energy

into the system. AsF , hq2yi gives access to S̃0ðq;ωÞ, but via
a more complex relation [5,22,23,33,36]. Figure 1(e)
exemplifies a resonance in hq2yi when varying ω at fixed
q. We extract its center frequency ωq via a Gaussian fit. By
varying q over the experimentally accessible range, we
probe the lowest-lying branch of the axial excitation
spectrum εðqÞ ¼ ℏωq [33].
Figure 2 shows the results of our Bragg measurements,

revealing how εðqÞ is modified when tuning from ϵdd < 1
to ϵdd > 1. For ϵdd < 1, εðqÞ shows a linear dependence
over the whole q range, characteristic of phonon modes,
Figs. 2(a) and 2(b). From a linear fit to εðqÞ, we estimate the
sound velocity c ¼ limq→0εðqÞ=q ¼ 1.01ð1Þ mm=s along
y. As we probe the system for increasing ϵdd > 1, we find
an overall reduction of the excitation energies and increas-
ing deviations of the spectra from the linear phonon
behavior, Figs. 2(c) and 2(d). When further increasing
ϵdd, the spectrum starts to flatten at large q, Figs. 2(e) and
2(f). Ultimately, at the highest ϵdd, we observe a local
minimum occurring at q ≈ qrot ¼ 1.27ð6Þl−1z , providing an

unambiguous signature of the existence of the roton mode,
Figs. 2(g) and 2(h). At intermediate momenta between the
phonon and roton regimes, a maxon [local maximum in
εðqÞ] is also identifiable. Because of optical constraints on
our Bragg setup, the maxon regime is not fully accessible;
see black region in Figs. 2(e) and 2(g). To compare our
measurements with theory, we perform calculations of
S̃0ðq;ωÞ, by calculating the Bogoliubov modes from the
Gross-Pitaevskii equation (GPE) linearized around equi-
librium at the final as [24,33,37]. Here we explicitly do not
include beyond-mean-field effects [33]; see later discus-
sion. Over the entire range of ϵdd, our theory describes
the experimental data, both qualitatively and quantitatively.
In the calculations of Fig. 2, we let as vary within the
prediction interval (�2a0) of our B-to-as conversion to best
match the measured spectrum.
To get a deeper insight into the roton softening, we

perform Bragg measurements at a fixed q ¼ qrot and extract
ωq, denoted ωrot, as a function of as for fixed N. As shown
in Fig. 3, ωrot exhibits a reduction that becomes increas-
ingly sharp for decreasing as. Below 52a0, we observe that
the system undergoes a roton instability, i.e., a spontaneous
population of the roton mode even without applying a
Bragg pulse; see also Ref. [21]. We find that the softening
of ωrot is well approximated by an as-power-law scaling.
By fitting the data to ωrotðasÞ ¼ Aðas − a�sÞp, we extract
the critical scattering length at which ωrot vanishes,
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FIG. 2. Excitation spectra from ϵdd < 1 to ϵdd > 1: (a), (c), (e), (g) Measured hq2yi for varying q (columns, delineated by white
tick marks) and ω at given as. Each column is fitted with a Gaussian function and renormalized by the fitted peak amplitude.
Black columns are inaccessible to measurements [33]. (b), (d), (f), (h) Extracted εðqÞ (white dots) from (a), (c), (e), (g), respectively.
Here and throughout the Letter, the error bars denote � one standard deviation. The solid lines are guides to the eye, based on the
analytic formula from Ref. [24]. The color map shows the calculated S̃0ðq;ωÞ, normalized by the maximum of S̃0ðq;ωÞ at qlz ¼ 1.3
and as ¼ 82a0. For [(a), (b); (c), (d); (e), (f); (g), (h)], N ¼ ½4.6ð5Þ; 3.9ð4Þ; 3.3ð3Þ; 2.5ð3Þ� × 104 and as ¼ ðasexp; aths Þ ¼
½ð80.0; 82.0Þ; ð60.5; 62.5Þ; ð55.3; 54.5Þ; ð52.5; 51.6Þ�a0, respectively.
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a�s ¼ 51.9ð2Þa0, matching our instability observation. We
also observe a scaling exponent of p ¼ 0.27ð2Þ (A is a
scaling coefficient). The pronounced dependence of the
roton energy on the interparticle interactions, i.e., on both
as and the atomic density, makes the measurements at low
energy very sensitive to fluctuations. Indeed, small fluc-
tuations and drifts in B and N can already drive the system
into instability, eventually preventing a reliable measure-
ment of the spectrum for ωrot ≲ 2π × 100 Hz; e.g., see
horizontal error bar in the inset. For comparison, we
additionally probe the as dependence of the excitation
energy ωq near the maxon at q ¼ 0.74ð3Þl−1z , denoted ωm.
We observe that ωm decreases much slower than the roton
case. As shown in the inset of Fig. 3, the two modes’
energies cross around as ¼ 52.8a0. For a�s < as < 52.8a0,
ωrot < ωm, showing the emergence of a local minimum in
the spectrum of a stable DBEC. At as ¼ 52.2ð2Þa0, the
minimum can be distinguished with a confidence level of
98% [33].
Figure 3 also shows ωrot extracted from our numerical

calculations, together with its variation within the predic-
tion interval of as. The theory describes our observation
very well and confirms the rapid variation of the roton
energy with as. We have also performed calculations
including beyond-mean-field effects in the form of a
Lee-Huang-Yang correction in the GPE [38–41]. This
additional term has proven to be crucial to understanding

the behavior of a DBEC in the droplet regime [17,18,
42–44]. Interestingly, the agreement between theory and
experiment becomes worse with a discrepancy that cannot
be accounted for with the experimental as uncertainty. Such
a discrepancy can have several origins. These range from
additional experimental uncertainties (e.g., N values,
effects of residual density-dependent dynamics [33]) to
more fundamental reasons. As speculated in Ref. [21], this
mismatch could call into question the validity of standard
treatments of beyond-mean-field effects in the roton
regime. For instance, the standard inclusion of a Lee-
Huang-Yang term in the GPE relies on a local density
approximation and is justified for negligible quantum
depletion and higher-order corrections [11,40–51]. These
conditions might not be completely fulfilled in the roton
regime. Future theoretical efforts, combined with stringent
validity tests on experiments, are needed to shed light on
this important aspect.
The emergence of a roton minimum intrinsically con-

nects to an increase of density-density correlations. This is
quantified by the amplitude of S̃0ðqrot;ωrotÞ [7,23,24,33],
which is related via Eq. (1) to the fraction of excited atoms
at the Bragg resonance F res. In the experiment, we explore
this aspect by measuring F as a function of ω at q ¼ qrot
using a fixed V0. From a Gaussian fit to the data, we extract
F res. We repeat the experiment for various as in the ϵdd > 1
regime; see Fig. 4. When approaching the roton instability
(a�s), F soars, with an increase by about a factor of 3 when
changing as by less than 15%. Such a behavior is also
confirmed by our theoretical calculations. Experimentally,
we find that the linear-response regime, i.e., the validity of
Eq. (1), extends up to F res ≈ 25%; see inset of Fig. 4.
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In conclusion, we measure the excitation spectrum of a
DBEC and its evolution from the contact-dominated regime
to the dipolar-dominated regime. In the latter regime, we
observe the emergence of a roton minimum. Comparisons
with theory reveal a good agreement with mean-field
Bogoliubov calculations and show deviations when includ-
ing beyond-mean-field corrections, calling for further
studies of their effects and their treatment in the roton
regime. Similar to the cases of superfluid helium [4,52–54]
and of hybrid systems of atoms and light [55,56], the roton
minimum may provide a path for the creation of supersolid
or crystalline phases in DBECs [4,28,57–59]. With the
achievement of a precise knowledge and control of the
roton softening, our work provides a first step in this
direction.
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PREPARATION AND CALIBRATION OF THE
dBECs

A dBEC of 166Er is prepared in the same way as de-
scribed in Refs. [1, 2]. Trapping is provided by crossed
optical beams forming a harmonic potential V (r) =
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2 for the atoms. At the end

of the preparation procedure, V (r) has a cigar-shaped
geometry with ωx,y,z = 2π × (261, 27, 256) Hz. The fre-
quencies are measured via exciting and probing either
the center-of-mass oscillation of dBECs (for ωx and ωz)
or the breathing mode of cold, thermal samples (for ωy).
The uncertainties of the trapping frequencies are at the
few-percent level. After reshaping the trap, we ramp as

linearly from as = 67 a0 to its final value in a time tr, by
performing a corresponding ramp in B, computed from
the calibrated B−to−as conversion [1, 2]. The ramp time
is chosen to be relatively long, tr ≥ 15 ms; see main text.
In our Bragg spectroscopy measurements, we apply the
Bragg pulse after an additional holding time th.

The number of atoms in the probed dBEC, N , is ex-
tracted from time-of-flight (TOF) measurements, per-
formed using the same experimental sequence as for the
Bragg measurements, but, instead of applying the Bragg
pulse, simply waiting th + τ/2 before releasing the atoms
from the trap. We extract the integrated density distri-
bution from standard absorption-imaging technique after
30 ms of TOF. We fit a two-dimensional bimodal func-
tion made of a Gaussian and an inverted parabola at the
power 3/2 to the density distribution. The values of N
reported in the main text corresponds to the number of
atoms in the parabolic peak. We note that N typically
fluctuates by up to 10% between experimental runs. In
addition, by measuring N at th and at th + τ , we observe
three-body losses during the Bragg pulse up to 20% for
the lowest values of as. Finally, we point out that the
bimodal function employed to extract N is an approxi-
mate description of a finite temperature BEC and may
lead to an underestimation of N , especially at our lowest
as values. The experimentally calibrated N and ωx,y,z
are used as fixed parameters in the theory calculations;
see below.
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FIG. S1. Example of calibration measurements of the
breathing and sloshing modes for the measurements at as =
52.5 a0 of Fig. 2 (g, h) of the main text. We record the varia-
tions with th of the cloud’s size (upper panel) and position in
TOF. From the position we compute the mean atomic veloc-
ity vat(th) (lower panel). The solid lines are sinusiodal fits to
the data. We time the Bragg pulse (orange shaded area) to
be centered on the cloud’s size maximum. The correspond-
ing mean atomic velocity is in this case vat = −68(16)µm/s.
Similar measurements and analyses have been performed for
each measurement reported in the main text.

ACCOUNTING FOR THE BREATHING AND
SLOSHING MODES: TIMING AND DOPPLER

SHIFTS

Our fastest as-ramps are not fully adiabatic with re-
spect to the axial dynamics and may induce small-
amplitude breathing and sloshing modes along y. Such
excitations could affect our Bragg measurements. The
former mode induces density oscillations and can influ-
ence the value of the roton excitation energy. The lat-
ter mode causes a sizable momentum-dependent Doppler
shift of the Bragg excitation frequency [3]. We account
for these effects in our experiment by performing dedi-
cated calibration measurements. In particular, we probe
the evolution of the atomic density distribution after
TOF, as a function of th. We perform such calibration
measurements for each as-ramp employed in the experi-



2

ment.
The breathing excitation reveals itself in the evolution

of the axial size; see Fig. S1 (upper panel). To minimize
the impact of the breathing mode on our measurements,
we synchronize the Bragg pulse symmetrically around the
moment at which the size in TOF reached its maximum.
Then, the in-situ density of the dBEC changes the least
and remains close to its highest value during probing.
The corresponding th, after which we switch the Bragg
beams on, is typically between 10 and 20 ms.

The sloshing mode reveals itself in the variation of
center-of-mass position of the atomic cloud. This gives
direct access to the mean velocity, vat(th), of the atoms
in the dBEC as a function of th; see Fig. S1 (lower panel).
By averaging over the duration of the Bragg pulse, vat =
〈vat(th)〉τ , we extract the induced Doppler shifts for the
Bragg excitation, ωD = vatq which we then use to correct
the applied Bragg frequencies ω. To check the accuracy
of our treatment, we have repeated Bragg spectrscopy
measurements at various as and q using Bragg pulses
corresponding to distinct ωD. In particular, to achieve
distinct ωD, we reversed the Bragg excitation direction
to compare measurements with ±q and used pulses start-
ing at different th, yielding vat ≈ {−vmax, 0, vmax}, vmax

being the maximum insitu mean velocity. A set of such
measurements is exemplified in Fig. S2, where we show
both the uncorrected and corrected resonance frequen-
cies ωq. The good agreement of the Doppler-corrected
values proves the validity of our approach. All data re-
ported in the main text are Doppler-corrected.

We stress that the value of ωD increases with q. As
an example, ωD/2π varies from 15 Hz to 40 Hz for q
varying from 0.74 l−1

z to 1.74 l−1
z in the measurements

of Fig. 2 (h). In the analysis of our data, it has thus been
important to carefully account for this effect.

BRAGG SETUP

Our Bragg spectroscopy setup is illustrated in
Fig. S3 (a, b). It employs a digital micromirror de-
vice (DMD), DLP-V9500 from Vialux with 1920 ×
1080 micromirrors. The DMD features a programmable
mirror area, consisting of 10.8× 10.8 µm-sized micromir-
rors that can be individually tilted in one of two direc-
tions. Depending on the mirror’s tilting direction, the
incoming light is reflected either into the Bragg spec-
troscopy setup or on a beam dump. We illuminate the
mirror area with a single frequency laser beam of wave-
length λL = 401 nm. The beam has an elliptic shape
with waists of (wz, whor) = (10, 1) mm. Here, wz (whor)
denotes the beam’s waist in the z (horizontal) direction;
see Fig. S3 (c). The beam is sent on the DMD’s mir-
ror area under an angle of ∼ 25◦ with respect to its
perpendicular axis, fulfilling the condition for a blazed
grating. This ensures a maximum diffraction efficiency
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FIG. S2. Bragg resonance frequencies ωq at |q| = qrot and
as = 52.7 a0 measured using three different Bragg pulses,
characterized by the couple {q, vat} (abscissa’s labels). For
each measurement, both the uncorrected (diamond) and
Doppler-corrected (circle) frequencies are shown. The dashed
line indicates the mean of the Doppler-corrected resonance
frequenies.

of the incoming beam into the beam path of the Bragg
spectroscopy setup.

Following Ref. [4], the general idea is to use binary
holograms that represent maps of titling directions for
the micromirrors of the DMD. By placing the DMD in
the Fourier-plane of the atoms, the holograms allow for
both amplitude and phase modulation of the laser beam
at the atoms’ position. They consist of an underlying
binary grating with two Gaussian envelopes separated
by a distance d on the DMD; see Fig. S3 (d). The Gaus-
sian envelopes cut out two beams from the incoming one.
Additionally, the envelopes correct for the local intensity
inhomogeneities of the incoming beam. After the DMD,
the two beams travel parallel with a distance d between
each other before being focused in a first optical tele-
scope; see Fig. S3 (b). Due to the binary grating struc-
ture of the holograms, each beam splits at the telescope’s
focus point into a 0th order and ±1st side orders. The fo-
cus point is used to let only the +1st order of each beam
pass by filtering out the other ones. The two remain-
ing +1st order beams constitute our two Bragg beams
and have a similar Gaussian profile as well as similar in-
tensities. After the telescope they are reflected down to
our experimental chamber where a last lens focuses them
under an angle θ onto our atomic cloud. At the focus
point, matching the atom’s position, the beams create
an interference pattern with a wavevector q along y. By
uploading a hologram with a different d one can change θ
and thus q in an almost continuous manner. We note that
due to optical constraints in the experiment (not shown
in Fig. S3), we can not create interference patterns in the
range of q = [0.4− 0.7] l−1

z .
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FIG. S3. Setup for Bragg spectroscopy: (a) Top view of the Bragg spectroscopy setup, showing the beam path of the incoming
beam (dashed arrow), the beams travelling in the Bragg-spectroscopy setup (solid arrow), and the dumped part of the incoming
beam (dotted arrow). (b) Side view of the beams travelling in the Bragg spectroscopy setup when a holographic grating pattern
is displayed on the DMD (see text for details). (c) Sketch of the elliptic beam shape of the incoming laser beam on the DMD.
(d) Examples of binary holograms uploaded on the DMD that allow to create two beams in the Bragg spectroscopy setup,
travelling parallel separated by a distance d. The three smaller images on the right show a zoom of one part of a hologram with
a phase shift of the underlying binary grating, resulting in three distinct phase difference, ϕ, of the Bragg beams. (e) Example
of light interference patterns at the position of the atomic cloud, obtained from offline calibrations with a CCD camera.

Furthermore, the relative phase, ϕ, of the two beam’s
wavefronts is directly related to the phase of the applied
binary grating on the DMD. It thus allows us to intro-
duce a frequency difference ω = dϕ/dt by displaying a se-
quence of holograms during the Bragg excitation, where
the phase of one of the two Bragg beams is constantly
shifted in time; see Fig. S3 (d). Practically, we set a se-
quence of nine holograms, which defines a phase revo-
lution of 2π, and display it in a loop with a fixed rate,
γ. This results in ω = 2πγ/9. The discrete phase steps
of 2π/9 are sufficient to not suffer from higher frequency
harmonics in our measurements. We note that γ is lim-
ited by the maximal refreshing rate of the DMD. Fur-
thermore, the inherent dark time of the DMD at each

hologram update results in a decrease of the average in-
tensity of the light grating when increasing γ. In the
experiment, we compensate for this effect by increasing
the intensity in the Bragg beams to maintain a constant
V0.

We further note, that the binary grating in our am-
plitude holograms take phase aberrations of the opti-
cal setup into account and corrects for them [4]. These
corrections are obtained from offline calibrations with
a CCD camera and greatly improve the beam pointing
of the individual Bragg beams on the atomic cloud, as
all lenses in the optical setup are spherical singlets. In
Fig. S3 (e), we show three example images of final inter-
ference patterns, obtained with a CCD camera during
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offline calibrations.
As the Bragg spectroscopy setup uses amplitude holo-

grams, typically only ∼ 0.1% of the incoming laser light
is used for the Bragg pulse. We take advantage of the
strong transition of erbium at 401 nm. First it allows a
wide tuning of V0 via the frequency detuning, ∆, of the
laser light from the atomic resonance. Second, its short
wavelength also leads to a higher maximum q for a fixed
maximum θ as compared to longer laser wavelengths.

In the measurements presented in the main
manuscript, the detuning ∆ = 2π × 71(1) GHz is
chosen such that we achieve suitable depths of the
Bragg potential (typically V0 ∼ h × 10 − 100 Hz),
while spontaneous light scattering remains negligible
on the experimental time scale. We extract V0 via the
Kapitza-Dirac-diffraction technique [5]. We note that
this approach neglects the inhomogeneity of the atomic
cloud over the wavelength of the interference pattern
and the interactions in the system.

IMAGE ANALYSIS

To probe the system’s response to the Bragg pulse,
we image the atomic cloud after a TOF expansion of
30 ms. As described in the main text, we perform ab-
sorption imaging along the z direction. During the first
15 ms of the TOF, the B-field is kept constant to avoid
any sudden change of the dipolar or contact interactions
when the atomic density is high. We then set the B-field
to B = 0.3 G and then rotate its direction to obtain a
maximal imaging-light scattering cross-section and con-
stant imaging conditions. Assuming ballistic expansion,
we obtain the mean momentum distribution n(qx, qy), by
averaging typically four individual images; see Fig. 1 (c)
in main text. Due to slight variations of the cloud’s po-
sition from shot to shot, each single image is recentered
by extracting the cloud’s center from a two-dimensional
Gaussian fit. In order to obtain the momentum dis-
tribution along the excitation direction of our Bragg
pulses, we numerically integrate n(qx, qy) along qx from
[−4.5,+4.5] µm−1 and obtain n(qy) (1 pixel in our imag-
ing corresponds to ∼ 0.32 µm−1). To extract information

on S̃0(q, ω) from n(qy), we measure either the fraction of
excited atoms, F , or the momentum variance, 〈q2

y〉, as
introduced in the main text and detailed below.

The procedure used to extract 〈q2
y〉 depends on q. For

qlz > 0.7, we use an asymmetric region of interest (ROI)
ranging from qy = [−1.9 µm−1, c̃ q], reflecting the fact
that the Bragg excited atoms occur around qy = q > 0.
The factor c̃ varies between [2.5, 4.5] in order to account
for the change in the cloud’s momentum width with as

(increasing for increasing as). At low momenta qlz < 0.5,
the excited fraction of atoms lies completely within the
unscattered peak and only a broadening of the atomic
cloud on resonance is observed. Therefore, we choose a
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FIG. S4. Resonance frequencies at as = 52.5 a0 obtained
from 〈q2y〉-analysis (cirlces) and F-analysis (diamonds). In
the latter case, we do not report on values for qlz < 1.1 as F
can not be reliably extracted.

symmetric ROI from qy = c̃phon[−1.6,+1.6] µm−1, where
c̃phon is varied between [1, 3] for different as. We fur-
thermore note that for qlz < 0.2 we are not able to ex-
tract a reliable signal in our measurements, as a potential
broadening of the atomic cloud on resonance can not be
resolved.

In order to extract the excited fraction F , we use a big-
ger ROI that includes the full thermal fraction of atoms
and fit a three-Gauss function. The individual Gaus-
sian distributions account for the unscattered atoms in
the dBEC N0 (centered at qy ≈ 0), the excited atom in
the Bragg excitation Nexc (centered at qy ≈ q) and the
broad thermal background. The center positions of the
Gaussian distributions for the unscattered atoms and the
thermal background are kept the same. The center for
fitting the excited fraction is limited to [0.95, 1.05] q. F
is then defined as F = Nexc/(N0 +Nexc), thus discarding
the initial (thermal) population at q and focusing on the
mere fraction of atom promoted during the Bragg pulse.

We extract ωq and Fres by a Gaussian fit to the res-
onances in 〈q2

y〉 and F for varying ω and fixed q. For
too low ω, the discrete phase steps of our holograms
do not provide a well-defined excitation energy over the
timescale of the 7-ms Bragg excitation. Hence, in our
analysis, we discard points at 0 < ω/2π ≤ 40 Hz (cor-
responding here to the non-Doppler-corrected frequen-
cies; the 0 Hz-case is the static case). Nevertheless, we
note that an inclusion of these points do not alter the
extracted resonance frequencies within their uncertain-
ties. Comparing the 〈q2

y〉 and F analysis, we also verify
that both analysis procedures give the same resonance
frequencies within their uncertainties; see Fig. S4).



5

SCATTERING-LENGTH VALUE AND ITS
UNCERTAINTIES

In our experiments we control the contact interaction
as by means of a magnetic Feshbach resonance, centered
close to 0 G [6]. From previous lattice-spectroscopy mea-
surements, where we probe the excitation gap in the Mott
insulator regime [1], we have obtained a precise map-
ping of the as-to-B conversion. In those measurements,
the statistical uncertainty on as has an average value of
s̄ = 1.8 a0 coming from the uncertainty on the resonance
frequency of the Gaussian fit to the spectroscopic data.
From a fit to the as-data, we obtained a precise B-to-
as conversion function for B ranging from 0 to 3 G [1].
For as ranging from 80 a0 down to 51 a0 (B from 2.1 G
to 0.21 G), our conversion function yields a confidence
interval of width c̄ varying from ± 0.9 to ± 1.3 a0. This
results into a prediction interval of width p̄ =

√
c̄2 + s̄2

varying from ± 1.9 a0 to ± 2.1 a0, which defines our con-
version uncertainty. In addition we estimate the system-
atic uncertainty to be ±3 a0 with a dominant contribu-
tion coming from the uncertainty on the depth of the lat-
tice potential in the spectroscopic measurements (which
crucially determine the on-site Wannier function’s shape
and thus the conversion of the resonance frequency value
into as).

Besides the conversion and systematic uncertainties,
statistical uncertainties on as arise from magnetic field
fluctuations and drifts in our experiments. For each
dataset we perform independent magnetic-field calibra-
tions by performing radio-frequency (RF) spectroscopy
on cold thermal clouds with a 1-ms RF pulse. Here we
use the same experimental B ramp as for the Bragg mea-
surement and apply a RF pulse of 1 ms duration, either
after holding a time th or a time th+τ . The mean value of
these two measurements is used to extract as. Further-
more, it probes the change of B over the Bragg pulse,
which can be up to 3 mG. Additionally, we have inde-
pendently estimated that B fluctuates up to ±2 mG. In
total, we consider a B uncertainty of ±2.5 mG, which we
convert in an as uncertainty based on the B-to-as con-
version formula. This can be up to ± 0.2 a0, which is
the case for our lowest as. In conclusion, in the relevant
regime for this work, the statistic, conversion and sys-
tematic uncertainties on as are of ± 0.2 a0, p̄ ∼ ±2 a0,
and ±3.2 a0, respectively.

CONFIDENCE LEVEL OF THE EXISTENCE OF
A ROTON MINIMUM

In order to confirm the existence of a local minimum
in the excitation spectrum of our dBECs, we compare
the maxon with the roton energy and extract a confi-
dence level from a statistical analysis. First, we focus
on a scattering length value of as = 52.5(2) a0 for which
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FIG. S5. Analysis on the extracted resonance frequencies ωm

(triangles) and ωrot (circles) for 52.5(2) a0 (a) and 52.2(2) a0

(b). In (a, b) filled symbols show data from Fig. 3, where
as empty symbols show data points from Fig. 2 (h). Error
bars represent ± one standard deviation of the corresponding
Gaussian fits. (c) shows the corresponding differences ∆ (after
averaging for 52.5 a0) together with its uncertainties, deduced
from standard error propagation.

two sets of data are available (from Fig. 2 (h) and inset
of Fig. 3). From both resonance frequencies ωm and ωrot,
we obtain the corresponding mean values ω̃m and ω̃rot.
Calculating the difference ∆ = ω̃m − ω̃rot = −0.08(5)ωz
reveals the existence of a roton minimum with a 93%
confidence level; see Fig. S5 (a,c). The existence of a ro-
ton minimum in the spectrum is even more evident by
analyzing ∆ = ωm − ωrot at 52.2(2) a0, where the mini-
mum is deeper. Here, we find ∆ = −0.15(7)ωz giving a
confidence level of 98% for the existence of a minimun in
the spectrum of a stable dBEC; see Fig. S5 (b,c).

THEORY

To compare our experiment with theory predictions,
we perform numerical calculations of the dynamic struc-
ture factor following the procedure detailed in the sup-
plementary information of Ref. [2]. The calculations are
based on a Bogoliubov treatment of an extended GPE
with energy functional ĤGP[ψ], for which our 166Er
dBEC is the ground-state. The classical field ψ describes
the macroscopic wavefunction of N atoms and is nor-
malized to N . The dBEC state, |0〉, corresponds to the
wavefunction ψ0. The Bogoliubov analysis gives access,
in second-order perturbation, to the discrete modes, |l〉,
of the dBEC’s excitation spectrum, to their energies h̄ωl
and the Bogoliubov spatial amplitudes ul and vl.

In the present calculations, we can in principle account
for the effect of the quantum fluctuations, by includ-
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ing the Lee-Huang-Yang term ∆µ[n] = 32g(nas)
3/2(1 +

3ε2dd/2)/3
√
π in ĤGP[ψ] (here g = 4πh̄2as

m and n = |ψ|2).
∆µ[n] has been obtained under a local density approx-
imation [7, 8] when computing the Bogoliubov modes.
The relevance of the inclusion of such a potential correc-
tion has been demonstrated in various studies of dipolar
Bose gases close to the mean field instability [1, 2, 9–
12]. However, as described in the main text, a better
agreement with experimental data, close to the insta-
bility, is found instead by omitting the Lee-Huang-Yang
term. ∆µ[n] is then only included in ĤGP for computing
the dotted line and the corresponding yellow shading in
Fig. 3 of the main text. It is discarded from all other
theory calculations reported in the main text.

The knowledge of the Bogoliubov modes allows one to
compute the bare zero-temperature dynamic structure
factor S0(q, ω), which is defined as [13, 14],

S0(q, ω) =
∑

l

∣∣〈l|δn̂†q|0〉
∣∣2 δ(ω − ωl), (1)

with δn̂q being the density fluctuation operator in mo-
mentum space:

δn̂q =

∫
dr eiq·r

(
ψ̂†(r)ψ̂(r)− 〈0|ψ̂†(r)ψ̂(r)|0〉

)
, (2)

and ψ̂ is the field operator. The matrix elements of the
density fluctuation operator are computed as

〈l|δn̂†q|0〉 =

∫
dr[u∗l (r) + v∗l (r)]eiq·rψ0(r). (3)

Considering Eq. (1), one sees that S0(q, ω) consists of in-
finitely narrow peaks centered around ω = ωl. The inte-
grated amplitude of each peak corresponds to the contri-
bution of the mode l to the quantum density fluctuations
of the dBEC at momentum q.

For our experimental probing, the relevant quantity
is the Fourier-broadened structure factor, S̃0(q, ω) =[
τsinc2(τω′/2) ∗ S0(q, ω′)

]
(ω), where ∗ denotes a con-

volution over ω′. This ultimately writes

S̃0(q, ω) =
∑

l

∣∣〈l|δn̂†q|0〉
∣∣2 τsinc2(τ(ω − ωl)/2). (4)

S̃0(q, ω) shows the same peaks in frequency as S0(q, ω)
but broadened with a typical width 1/τ . The ampli-

tude of S̃0(q, ω) on resonance matches the contribution
of the mode |l〉 to the quantum density fluctuations of
the dBEC at momentum q, multiplied by the Bragg pulse
duration, τ .

CONNECTION BETWEEN MEASURED
QUANTITIES AND DSF

In our experiment, we probe the dynamic structure
factor either via the fraction of atoms excited from the

dBEC peak at qy = 0 to the Bragg peak at qy = q or
via the momentum variance along the y axis. Following
Refs. [13, 14], we derive the relations of our observables

to S̃0(q, ω). The occupation of each mode after the pulse
is given by (Ref. [14], Eq. (2.31)):

Fl =
〈Nl(t = τ)〉 − 〈Nl(t = 0)〉

N
(5)

=
π2V 2

0 τ

h2

∣∣〈l|δn̂†q|0〉
∣∣2 τsinc2(τ(ω − ωl)/2), (6)

with 〈Nl(t)〉 being the mean number of atoms in the mode
l at time t (t = 0 matching the beginning of the Bragg
pulse). Equation (1) of the main text is then found by
simply summing F =

∑
l Fl and using Eq. (4). We note

that in our data analysis, the thermal (i. e. initial) popu-
lation at qy = q is encompassed in the broad background
Gaussian and thus excluded from the definition of F ,
similarly to Eq. (5).

For the momentum variance, the situation is more
complex. Assuming a fully ballistic expansion and a lin-
ear perturbation regime, h̄2〈q2

y〉/2m matches the energy
transferred during the Bragg pulse. For each mode, the
energy transferred during the pulse writes FlNh̄ωl. Us-
ing Eq. (6), one finds

〈q2
y〉 − 〈q2

y〉0 =

4π3mV 2
0 τN

h3

∑

l

∣∣〈l|δn̂†q|0〉
∣∣2 τωlsinc2(τ(ω − ωl)/2). (7)

where 〈q2
y〉0 is the value of 〈q2

y〉 for the dBEC (ofN atoms)
in absence of a Bragg pulse (at t = 0) and typically de-
pends on the value of as. Because of the multiplication
of ωl in the sum, 〈q2

y〉 can only be related to S̃0(q, ω)
approximately. When only one mode contributes signifi-
cantly to S̃0(q, ω), at a given (q, ω) one can write

〈q2
y〉 − 〈q2

y〉0 ≈
8π4mV 2

0 τNε(q)

h4
S̃0(q, ω). (8)

Note that, for a fixed q, ε(q) is a constant multiplying the
overall amplitude but not affecting the peak position in ω.
We highlight again that, in the experiment, we observe no
significant difference in the extracted ε(q) when analyzing
F or 〈q2

y〉; see Fig. S4.
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[9] F. Wächtler and L. Santos, Phys. Rev. A 93, 061603

(2016).
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3
Supersolidity

This chapter gives an overview of supersolidity in a dipolar quantum gas. In particular,
Sec. 3.1 reviews the basic properties of a supersolid state with emphasis on its first predic-
tions, and early experimental search. Section 3.2 focuses on the dipolar case with the aim
of providing the ingredients for realizing such a counter-intuitive state. Section 3.3 explains
the excitation spectrum of the supersolid state and how to measure it. Sec. 3.4 compares the
dipolar supersolid state to other supersolids. Finally, Sec. 3.5 to 3.7 present the three related
publications. In the first one, our group reported on the observation of supersolidity. In such
a work, our ERBIUM team joined the force with the Dy team in our group and reported the
observation of supersolid states with both atomic species and uncovered the phase diagram
as a function of the strength of the contact interactions. In the second publication, the
excitation spectrum of the supersolid state is theoretically investigated and probed in the
experiment. Such a work, performed with Er, shows the appearance of two distinct branches
of excitation, each one related to the spontaneous breaking of a symmetry. Finally, the third
publication studies the dephasing and rephasing process after an interaction ramp from a
supersolid state to an insulating droplet crystal and back.

3.1 Historical overview

A supersolid is a state of matter with two spontaneously broken continuous symmetries:
the translational and the gauge symmetry. The broken translational symmetry signifies the
emergence of a crystalline structure in space with a defined phase of the modulation. The
gauge symmetry, which is typical of Bose-Einstein condensates, signifies a global phase co-
herence. Such a system is quite counterintuitive since a supersolid state combines superfluid
flow with crystal localization.

The search for supersolid states can be traced back to 1908. It was the 10th of July, when
“Leiden briefly became the coldest place on earth”[vD08]. On this date, Heike Kamerlingh
Onnes liquefied helium for the first time. The experiment produced just about “a teacup” of
liquid He at −269 ◦C, but suddenly the path for studying superconductivity and superfluidity
was set.

43
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Only three years later, Omnes’s group produced a superconductor in the same laboratories
using helium as a refrigerant. They discovered that by cooling mercury at about 3 K, the
resistivity of mercury drops to zero [Kam11, vD10]. This incredible discovery put a little aside
another quantum phase transition that happened during the same experiment. When cooling
helium below 2.2 K, helium suddenly stopped boiling. It highlights the transition to a phase
with high heat conductivity, hence the transition to the superfluid state. The discovery of
the properties of superfluid helium will only happen almost 20 years later. In the meantime,
in 1926, Willem Hendrik Keesom (a former student of Onnes) discovered that, by increasing
the pressure to a value of at least 25 atm, liquid helium performs a phase transition to the
solid phase [Kee26]. In fact, due to the high zero-point energy, even at zero temperature, it
is not possible to solidify helium at atmospheric pressure [Bea20]. In 1938, Kapitza was able
to discover the superfluidity of He when cooling it below the lambda point [Kap38]. This
point corresponds at room pressure to 2.17 K, and the name lambda point derives from the
behaviour of the specific heat versus temperature that resembles the greek letter. At this
low temperature, the viscosity of helium was negligible. Allen and Misener independently
confirmed this result [All38]. It became clear that 4He below the transition temperature
behaves like a different liquid: a superfluid. During the same year, London’s work connected
the superfluidity observed in 4He with Bose-Einstein condensate [Lon38]. From this, Tisza
introduced a two-fluid hydrodynamic description based on the idea that a certain fraction
of condensed particles occupies the lowest energy state [Tis38]. The fact that no lambda-
transition was present in liquid 3He and that many experiments verified the prediction of the
two-fluid model, see for e.g., [Pes48, And71b], finally confirmed this assumption. However,
the theoretical approach from Tisza and London raised two strong objections. First, the
theoretical model considered 4He a perfect gas, despite the fact that instead He is a strongly
interacting fluid. Second, the mechanism that prevented the momenta exchange between the
condensed particles with the excited ones was not clear. Therefore, Landau and Bogoliubov
would have expected friction. These shortcomings led Landau to consider the elementary
collective excitations to explain the superfluidity. In 1941, Landau introduced the concept
of roton elementary excitations [Lan41]. He described the energy spectrum as formed by a
phononic part at low momenta and a roton part. The phonon part has a linear dispersion
relation, ϵ = cp (c being the sound velocity), while the roton part has a quadratic dispersion
relation, ϵ = ∆ + p2/2µ (here µ is an effective mass and ∆ the roton gap).

In 1956, Penrose extended the mathematical description of BEC to a system of interacting
particles [Pen56]. The properties and the phase diagram of 4He became more clear. When
changing temperature and pressure, it was clear that there were two different liquid phases
and one solid phase. In this context, Gross attempted a unified theory of interacting bosons
to connect the vibration spectrum of the solid with the excitation spectrum of the liquid
phase [Gro57]. At the beginning of the 60s, the question that inspired the scientists in the field
was: Can a solid be superfluid? It was the beginning of the race for supersolidity. In 1970,
Leggett proposed a possible experiment to probe superfluidity in solid helium [Leg70]. This
experiment consisted in extracting the moment of inertia of a rotating solid He as a function
of the temperature. An observation of a reduction of the moment of inertia with respect to
the classical value, when lowering the temperature below the critical value for superfluidity,
would signalize the transition to the supersolid state, where the superfluid part decouples
from the rotation of the normal component. This is reminiscent of the experiment performed
by Andronikashivili to determine the superfluid fraction of liquid helium [And71a].
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In 2004, Kim and Chan prepared the experiment conceived by Leggett. This consisted
in probing the period of a torsional oscillator, containing solid He, as a function of the
temperature. The period relates to the moment of inertia, I, and the torsional stiffness of
the system, K, through the relation: Tosc = 2π

√
I/K [Kim04]. The authors observed the

predicted reduction below the critical temperature for superfluidity. This observation was
questioned in 2007, when Day and Beamish published a measurement of the increase of the
shear modulus of solid He when decreasing the temperature [Day07]. This work, followed
by another work in which the torsional oscillation period and shear modulus were probed
simultaneously, suggested a different interpretation for the observed behaviour [Kim12]. In
particular, the observed reduction of the torsional oscillation period was not related to a
reduction of the moment of inertia, but rather caused by a change in the shear modulus,
whose temperature behaviour arises from the temperature dependence of the crystal defects
motion.

In fact, the properties of solid helium are extremely different than standard crystals. Even
at zero temperature, the atoms in the crystal can tunnel between different lattice sites
and have a non negligible exchange-interaction term. This arises from the large zero-point
energy, due to the small mass and inter-particle spacing [Bea20]. Even if the theoretical
results were promising and showed that the defects in solid 4He could lead to superfluidity,
experimental proof of supersolid 4He is still missing at the date. The research on solid helium
is fascinating but goes beyond the aim of the current thesis, and for that, we refer the reader
to e.g., [Bea20].

Nevertheless, supersolids were found about 50 years after Leggett’s thought experiment
in ultracold quantum gases, thanks to the control and understanding reached over the
years in these platforms. To date, supersolids have been observed in different systems,
owning momentum-dependent interactions, such as systems with cavity-mediated interac-
tions [Bau10], spin-orbit coupled BECs [Li17], and dipolar atoms [Tan19a, B1̈9b, Cho19]. In
the rest of the chapter, we will mainly focus on the latter system, and briefly comment on
its peculiarity with respect to the other platforms.

3.2 Supersolidity in dipolar gases

Even if the research on supersolids with 4He did not give clear results, the understanding of
helium was fundamental to the cold-atom community. In particular, Schneider associated
the superfluid-solid transitions of 4He to the softening of the roton mode [Sch71, Noz04].
It was confirmed by measuring the reduction of the roton gap obtained by increasing the
pressure, see Ref. [Sud77]. Additionally, the softening of the roton mode was also linked to
a route towards a supersolid from Kirzhnits and Pomeau [Kir71, Pom94].

Let us now consider some differences between the two systems. Superfluid 4He and trapped
atomic gases correspond to two limiting cases of quantum fluids [Dal01]. In the case of super-
fluid 4He, the system is in the liquid phase. Here, the density is about one-eighth the density
of liquid water at atmospheric pressure. The average interatomic distance (dHe) is approx-
imately equal to the interaction range (aHe), dHe ≈ aHe ≈ 0.3 nm. The system is strongly
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interacting. Therefore, the condensate fraction is about 10% even at zero temperature. The
excitation spectrum presents a roton mode due to the strong correlations, whose wavelength
is comparable with the interparticle distance. Hence, when it softens, it provides a standard
crystallization with one atom for lattice site.

In the case of dipolar gases, an excitation spectrum developing a roton minimum was pre-
dicted in two cases (and geometries) qualitatively very different from each other. For two-
dimensional dipolar bosons oriented perpendicularly to the plane, with zero s-wave scattering
length, a roton minimum appears when increasing the particle density. This roton originates,
similar to the case of helium, from the strong correlations, and its wavelength is approxi-
mately the inter-particle separation, resulting in one atom per lattice site. However, even at
high density close to the solidification point, the roton energy gap is finite [Ast07, Maz09].

In the case of dipolar gases in three-dimensional traps, which is the case of interest here,
the system is dilute, and the roton modes come from the interplay between the short-range
contact interaction, the momentum-dependent long-range interaction, and the trapping ge-
ometry, see Chap.2. Additionally, the roton wavelength in the case of erbium or dysprosium
is much larger than the interparticle distance. Therefore, it leads to a dilute crystal with
thousands of atoms in each lattice site. Table 3.1 summarizes those parameters, comparing
helium droplets to the typical experimental parameters for a BEC of erbium atoms investi-
gated in this thesis.

Typical parameters for 4He and 166Er

Quantum fluid 4He 166Er

Interaction range ≈ 0.3 nm ≈ 3 nm

Interparticle spacing ≈ 0.3 nm ≈ 200 nm

Diluteness na3s ≈ 0.3 ≈ 2 × 10−6

Healing length ξ = [8πna]−1/2 ≈ 0.1 nm ≈ 400 nm

Table 3.1: Comparison between typical parameters of 4He and a BEC of 166Er atoms investigated
in this thesis.

We note that, theoretical works predicted the appearance of a supersolid phase also in
systems interacting via a soft-core potential, where more particles arrange in clusters. Such
a potential can be experimentally realized through Rydberg excitation [Cin10, Hen10, Anc13,
Mac14].

3.2.1 Early hints of supersolidity

The conceptual development that led to the discovery of supersolidity in magnetic atoms has
developed along two parallel lines: on the one hand, the prediction and later observation of
the roton excitation in dipolar gases [San03, Cho18], and on the other hand, the identification
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Figure 3.1: Softening of the roton mode, growth of the roton population and ground
state. (a) Illustration of the excitation spectrum of a dipolar BEC for two different scattering
lengths. (b) Evolution of the roton population (renormalized to their 3 ms value) after a quench to
as = 50a0. The solid brown line shows the theoretical prediction from a simple analytic model not
accounting for quantum fluctuations, three-body-loss processes, and finite temperature. Those are
included in the red-dashed line representing the results of numerical simulations, see Ref. [Cho18].
(c) Integrated ground-state density profile for the parameter of (b) showing the modulated supersolid
state for 166Er with 6×104 atoms. Trapping frequencies and scattering length for (b,c) are: ωx,y,z =
2π × (114, 32, 149) Hz, as = 50a0. Adapted from Ref. [Cho18].

of a quantum stabilization mechanism seeded by the quantum fluctuations [FB16, Cho16].
These two lines interweaved many times and, although their link to dipolar supersolidity is
clear nowadays, it was not the case during the first investigations.

In 2003, the presence of the roton mode was predicted in a BEC with dipole-dipole inter-
actions. On the one hand, in Ref. [O’D03], the dipole-dipole interaction is engineered via
atom-light interaction by shining a far off-resonant laser beam onto the atoms. On the other
hand, in Ref. [San03], the roton arises from the momentum dependence of the long-range
anisotropic interaction of dipolar gases.

In the meantime, Bose-Einstein condensates of dysprosium [Lu11], and erbium [Aik12] be-
came available, and in 2016, the group of Tilman Pfau in Stuttgart, using a dipolar BEC
of dysprosium atoms confined in a pancake geometry, observed that the system developed
a crystalline structure when decreasing the contact interaction [Kad16]. Surprisingly, the
lifetime of this state was not compatible with the mean-field picture of a collapse. This
state, even if not showing a global phase coherence, was opening a fundamental ques-
tion: Why is the system stable? Several works proposed 3-body repulsive interactions as
a possible mechanism for stabilizing the system, see Refs. [Lu15, Xi16, Bis15]. Inspired by
Ref. [Pet15], where the quantum fluctuations are proposed as a stabilization mechanism for
a mixture with attractive mean-field interactions, the experiments done with Dy and Er,
in Refs. [FB16, Cho16] supported the idea of beyond mean-field interactions as responsi-
ble for the stable droplet states. Theoretical works followed soon after and confirmed the
experimental observations [W1̈6b, Bis16, W1̈6a].

Thereafter, our group using erbium atoms confined in a cigar-shape geometry, with dipoles
orientated orthogonal to the cigar, studied the response of the system to a quench of the
scattering length to lower values [Cho18]. The main results of this experiment include:
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� The first experimental observation of the roton mode.

� A study of the roton geometrical scaling and its softening.

Figure 3.1 illustrates the softening of the roton mode (a) and the associate grow of the roton
populations from Ref. [Cho18]. Interestingly, our group observed that, while it is possible
to interpret the early evolution of the roton population, after the interaction quench, as an
exponential growth dictated by the imaginary gap, the growth in populations saturates and
stabilizes after a few milliseconds, see Fig. 3.1(b). This observation is not compatible with a
pure mean-field approach.

In a subsequent work, we mapped via Bragg spectroscopy the excitation spectrum before its
softening, see Sec. 2.6. While this work confirmed the mean-field theory predictions of the
roton minimum and its related increase in density-density correlations, did not provide an
additional hint to understand why after the roton instability the system’s response was not
a collapse. It seems that a fundamental piece was missing. Also, in the first version of the
paper [Cho17], the authors write: “the high shot-to-shot repeatability of the remarkable peak
structure in ñ(kx, ky) suggests the persistence of a macroscopic phase coherence in the gas.”,
and conclude: “These density modulations, providing a signature of the roton softening in
real space, are a precursor of a supersolid phase, in which a phase-coherent density modulated
ground-state would arise [Pom94]. Although the density modulation is expected to be mean-
field unstable against local collapses [Kom07], quantum stabilization may prevent collapse as
for the case of recently explored quantum droplets [W1̈6b, FB16, Cho16, W1̈6a, Bis16]”.

Soon after, Roccuzzo and Ancilotto, revising this experimental paper on the roton softening,
but in a tubular confinement with periodic boundary conditions, found a supersolid ground
state [Roc19]. After the publication of the manuscript, we performed the ground-state cal-
culations for our finite-size system, and confirmed that, for some of the parameters, the
ground state is a supersolid. Figure 3.1(c) shows the calculation of the integrated density
profile of the ground state for the parameters of Fig. 3.1(b). The theoretical and experi-
mental efforts exponentially increased in the following years. Finally, in 2019, by merging
the two concepts of roton softening and quantum fluctuations, the groups of Giovanni Mod-
ugno in Pisa [Tan19a], Tilman Pfau in Stuttgart [B1̈9b], and our group in Innsbruck [Cho19]
(with two different experiments) independently confirmed a state with supersolid properties,
namely the observation of a density-modulated state that has global-phase coherence.

Note that, while all those works claim supersolid properties, there are some differences. In
particular, we can group the work performed with Er in Ref. [Cho19] with the work performed
in Refs. [Tan19a, B1̈9b]. In all these works, the supersolid state is obtained via a ramp of the
scattering length from a standard BEC phase and the lifetime observed was ≈ 20 ms. This
raised two questions: first, whether the phase coherence was reminiscent of the standard
BEC phase, and second if a long-lived stationary supersolid could be obtained. Differently,
in Ref. [Cho19], we include the work performed in our group with 164Dy, where we reached
the supersolid via evaporative cooling from a thermal gas, and observed a lifetime above
100 ms.
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3.2.2 Probing a supersolid state

Let us now focus on how to probe a supersolid state. In particular, the properties of den-
sity modulation and global phase coherence. The presence of a density modulation can be
detected either by probing the density distribution of the gas in trap (in-situ imaging) or by
probing the momentum distribution of the cloud after a long expansion time (TOF imaging).
For the result presented here, the ERBIUM experiment did not have yet a high resolution
objective to probe a density modulation with a wavelength of about 2 to 3 µm1. Figure 3.2(c)
shows a typical ground-state density profile for an 166Er supersolid optically confined in a
cigar-shaped three-dimensional trap. Here, we see about three leading density peaks with
an interpeak spacing of ≈ 2.5 µm and a total sistem size of ≈ 20 µm. Figure 3.2(a), shows
instead the equivalent calculations for the ground-state density in the case of an infinite tube,
where the confinement is not applied along the modulation direction.

In our experiment, after evaporatively cooling the dipolar gas to BEC, we reshape the BEC
in a cigar-shape confinement and linearly ramp in 20 ms the scattering length to the desired
value, corresponding to a supersolid state. After an additional 10 ms of holding time, we
release the cloud from the trap and observe the momentum distribution after TOF expansion
of about 30 ms. In the BEC regime, the momentum distribution shows the standard bimodal
distribution. In the modulated phase, we find an interference pattern with a central peak
and two side peaks. The separation between these peaks reflects the wavelength of the insitu
density modulation. To probe the supersolid nature of the state, we take several pictures
under the same experimental parameters. If the system has global phase coherence, the
picture, averaged over the many repetitions, preserves the interference pattern. Whereas,
if the system is in an insulating droplet regime, while the single pictures still show an
interference pattern, the latter gets washed out in the average. To get a quantitative analysis
of the modulation contrast and of the coherence, we perform a Fourier-transform analysis of
the interference pattern. A detailed description of the analysis is reported in the publication
in Sec. 3.5 at the end of the chapter.

Figure 3.2(a,c) allows a first consideration of the effect of the finite system. The supersolid
state obtained in the experiments presents 3 to 6 density peaks. Due to the presence of the
harmonic confinements, the ground state is not degenerate to a phase variation of the density
modulation. For each configuration, there are only two metastable states, corresponding to
the case of odd or even number of density peaks, that have similar energy. The difference
between the two configurations is the presence or not of a density peak in the center of the
harmonic confinement, see e.g. Fig.1 in the publication in Sec.3.6.

3.3 The excitation spectrum of a dipolar supersolid

The excitation spectrum provides information about the properties of the system. For exam-
ple, the linear dispersion at low momenta relates to the speed of sound. The Landau criterium
vc ≤ mink

ε(k)
ℏk gives an upper bound on the critical velocity for superfluidity. Additionally,

1 A high-resolution objective has been recently installed in the experiment and will be used in the future.
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Figure 3.2: Ground-state density and excitation spectrum for an 166Er supersolid. Inte-
grated ground-state density profiles for an 166Er supersolid with 5×104 atoms for an infinite system
(a), and in the case of a harmonic confinement (c). Relative excitation spectra for the infinite
(b) and trapped (d) case. Blue and red dashed lines correspond to the crystal and phase branch,
respectively (see discussion in Sec. 3.3). Colorbar represents the dynamic structure factor. Trap-
ping frequencies for (a,b) are: ωx,y,z = 2π × (250, 0, 160) Hz. Trapping frequencies for (c,d) are:
ωx,y,z = 2π × (250, 31, 160) Hz. Adapted from Ref. [Pet20].

quantity like the dynamic structure factor, introduced in Sec. 2.2, directly gives information
on the response of the system to perturbations and on the strength of the density-density
correlations. Finally, the excitation spectrum reflects the broken symmetries in the system.

A spontaneous symmetry breaking reveals itself in the excitation spectrum with the appear-
ance of an excitation branch [Gol61, Sac12, Mac13, Roc19]. In the case of a supersolid, we
observe two branches recalling the crystal and the superfluid nature of the system. Start-
ing from a standard dipolar BEC, when reducing the contact interaction, the roton softens
and the ground state acquires a density modulation with a periodicity close to the roton
wavelength. At the phase transition, the spectrum presents an additional branch of nearly
degenerate modes. When reducing further the scattering length, the contrast of the density
modulation increases and one of the branches start to soften in energy (red-dashed line in
Fig. 3.2(d)). This branch is associated with modes involving a superfluid flow between the
density peaks. Differently, the second branch (blue-dashed line in Fig. 3.2(d)) slightly stiffens
in energy. This branch is associated with crystal modes, with mass currents only inside the
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individual density peaks, e.g. breathing or oscillation of the density peak position. Addi-
tionally, some of the modes have a mixed character, this is expected in our system since DDI
correlates the density with the position of the peaks.

In the publication presented in Sec. 3.6, we detailed the evolution of the excitation spectrum
and its experimental measurements from a standard superfluid BEC to the supersolid phase
and in the independent droplets (ID) regime, for our experimental parameters. Here, we focus
on the difference between the finite and the infinite case. Figures 3.2(b,d) show the excitation
spectrum associated with the supersolid ground-state density profile in (a,c), respectively.
In (a) the cigar is infinitely long, whereas in (b) the harmonic trap is present also along the
direction of the modulation.

Figures 3.2(b,d) show how the presence of the confinement induces a discretization in the
energy of the allowed Bogoliubov modes, as described in Sec. 2.2. Additionally, the finite size
leads to a broadening in the momentum response of the modes. This makes the two branches
less visible than in the infinite case. This effect is particularly evident in Fig. 3.2(c,d) where
the ground state has only a few density peaks and the two branches have similar energies.

3.3.1 Exciting a dipolar supersolid state

In addition to the observation of density modulation and global phase coherence, the exis-
tence of two branches are a further proof of supersolidity [And69, Pom94, Sac12, Mac13].

In our experiment, after studying the roton excitation spectrum via Bragg spectroscopy, it
could have been natural to apply the same technique to resolve the two branches of the
supersolid state. However, to resolve two branches of the excitation spectrum that are
comparatively close to each other, it is necessary to constrain the mechanisms of energy
broadening. For instance, the pulse duration of the Bragg spectroscopy induces an energy
broadening of each Bogoliubov mode (Fourier broadening in energy ≈ h × 150 Hz), see
Eq. 2.26 and discussion in Sec. 2.5. This makes it harder to resolve the two branches using
this technique. As detailed in Sec. 2.5, the pulse duration needs to be shorter than the
quarter period (T/4) of the trap along the modulation axis (Bragg direction). Even reducing
the trapping confinement, to increase T/4 and hence the duration of the pulse, would not
significantly help in resolving the two branches due to the short lifetime of the erbium
supersolid states. In fact, in Er, the supersolid state is lost due to three-body losses on a
time scale of 20 ms, which set an upper limit to the pulse duration. We note that in our
dysprosium experiment, we found a regime of parameters where the supersolid is stable,
living several hundreds of ms [Cho19, Soh21], opening the way to use Bragg spectroscopy to
resolve the two branches in the excitation spectrum of the supersolid.

For the aforementioned reason, we used a different approach to excite the supersolid. After
preparing the state, we induce collective excitations, such as a quadrupole mode, by suddenly
changing the confinement potential.

We then probed the system in TOF after a variable holding time. For large values of the
scattering length, where the system is in the BEC phase, this scheme excites a quadrupole
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mode. However, in the supersolid regime, several modes, of the two branches, can be excited,
providing complex dynamics. The next step was to develop a method to distinguish the
different excitation modes, i.e. the ones related to the crystal branch and the ones belonging
to the phase branch. To this aim, we have adapted the so-called principal component analysis
(PCA) to our supersolid state, as detailed in the next section.

3.3.2 Principal component analysis

The principal component analysis is a machine-learning algorithm. It is widely used in
different fields, see e.g., Ref. [Moo01], where it is used for Face-Recognition, or Ref. [Kot13],
where the authors classify electroencephalographic signals. In the field of ultracold atoms,
it was successfully used for processing atomic interferometric data in Ref. [Seg10]. The use
of the PCA was further extended in Ref. [Dub14] to observe and classify the elementary
low-energy collective excitations of a quantum degenerate gas of 87Rb atoms.

Similarly, in our group, we use the PCA to decompose the complex dynamics of the excited
supersolid in the modes of the Bogoliubov theory. Below, the steps for the PCA are sum-
marized. We select a portion of our image of 71*71 pixels from the total ROI. This selection
is centered on the atomic position by a Gaussian fit. We rewrite all our images as a vector
ρs(i). Here i and s are two indexes associated with the image number (i ∈ [1,M ] ,M is the
number of images), and the pixel number (s ∈ [1, P ] , P is the number of pixel), respectively.
The average images are then calculated as follows:

ρ̄(s) =

M∑

i=1

ρi(s)/M. 3.28

From this, we can derive for each pixel the fluctuations of the image compared to the averaged
one:

δρi(s) = ρi(s) − ρ̄(s). 3.29

We then compute the correlations between two pixels (s, s∗) from our set of images:

Cov(s, s∗) =

M∑

i=1

δρi(s)δρi(s
∗)/ (M − 1) . 3.30

This is usually referred to as the covariance matrix. We then diagonalize this matrix. The
eigenvectors are images called the principal component Cs. In our case, the dataset contains
images for different holding times. From the scalar product of a given principal component
and the images of the series, we can calculate the weight evolution of the component:

ws,i =
P∑

s∗=1

Cs(s
∗)ρi(s

∗). 3.31
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From the weight and Cs we can recover each image of the initial sample, as follows:

ρi(s
∗) = ρ̄(s∗) +

P∑

s=1

ws,i Cs(s∗). 3.32

Once the covariance matrix is diagonalized, one needs to identify the principal components.

The population of the BdG modes affects the dynamics of the state and, starting from
Eq. 2.13, we can write the time evolution for the density:

n(r, t) ≈ n0(r, t) + 2
∑

l

ηδρl(r) cos (ωlt+ ϕl) , 3.33

where we neglect quadratic terms in η. Here, the first term is the ground-state density and
δρl = (ul + v∗l ) |ψ0| are the density fluctuations associated to the mode l.

The similarity between Eq. 3.33 and Eq. 3.32 are evident and one can apply a sine fit to
extract the oscillation frequency from the weight ws,i. By directly comparing the frequencies
of the Bogoliubov mode ωl from GPE to the one obtained from the weight, we can correctly
assign the mode.

The comparison of the principal components Cp(s) to the Fourier transform of the density
fluctuations δρ confirms the assignment. We performed the Fourier transform since, while
Eq. 3.33 considers the in-trap density distribution, the principal components Cp(s) derive
from the experimental pictures taken after TOF expansion.

3.4 Other supersolids and where to find them

As mentioned in Sec. 3.1, the experimental search for supersolidity started in solid helium.
Differently from other crystals, the small mass together with the atomic interactions al-
lows helium to have a large zero-point energy. This causes the atoms to have tunneling
and exchange interactions even at zero temperature [Bea20]. A fascinating prospect is the
Bose-Einstein condensation of defects in solid helium. At this date, unambiguous proofs of
supersolid helium are missing, but the research in the field is very active. Recently, differ-
ent groups suggested superfluid flow related to dislocations to explain their results, see e.g,
Ref. [Ray09, Che16, Hal19]. While in solid helium there is limited control on interactions
and defects in the crystal structure, such control is nowadays possible in quantum-gases
platforms.

The tunability offered by ultracold atoms made them a unique candidate to demonstrate
this exotic phase. In particular, supersolid properties were probed in three different ultra-
cold platforms. The first observation comes from the seminal work in 2010 in the group of
Tilman Esslinger [Bau10]. In this work, a supersolid state is created in a 87Rb BEC thanks
to the coupling to external cavities. Later on, in 2016 the group of Wolfgang Ketterle used
a spin–orbit-coupled Bose-Einstein condensate to realize the supersolid state, see Ref.[Li17].
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This phase was also studied by the group of Ian B. Spielman, who confirmed the coher-
ence between the spin components [Put20]. The next paragraphs briefly discusses these two
platforms.

Cavity-mediated long-range interactions can be engineered in ultracold systems using exter-
nal cavities [Dom02, Nag08, Bau10]. In this system, a pump laser controls the interaction
strength that can be tuned via its power and detuning. Similar to the dipolar case, the
momentum-dependent interaction can cause the softening of a roton-type mode [Mot12]. By
increasing further the interaction, the system enters into a phase with density modulation
and off-diagonal long-range order [Bau10]. The breaking of the continuous translational
symmetry was experimentally observed by measuring a high degeneracy in the phase of
the crystal modulation [Léo17]. The resulting supersolid state is rigid, which leads to the
absence in the excitation spectrum of the branch corresponding to low-momentum phonon
excitations. However, even if modes associated to a change of the modulation wavelength are
absent, the one associated to a change in modulation amplitude or phase were experimentally
probed [Lé17].

In a spin–orbit-coupled system, two components, usually two spin states, are Bose-Einstein
condensed and coupled via a Raman laser [Lin11]. This leads to a momentum-dependent
interaction that induces a roton minimum in the dispersion relation. In the supersolid phase,
also known as the stripe phase, the period of the density modulation is the wavelength of
the Raman laser with a shift that grows quadratically with Raman coupling [Mar21]. Note
that by increasing the Raman coupling one induces stiffening of the roton mode. The phase
of the modulation is set both by the relative phase between the Raman lasers and the
pre-existing relative phase between spin components. While the simultaneous presence of
long-range coherence and the spatial density modulation of Spin-Orbit-Coupled Bose gases
was experimentally explored [Li17, Put20], the lattice-phonon mode remains unobserved.
However, the spectrum was studied in theory and two gapless branchs are present [Mar21,
Gei21, Gei22]. The modes in the lower branch correspond to spin excitations, while the one
in the upper branch to density modes [Gei21]. Hence, also oscillations of the fringe spacing
are possible [Gei22]. Nevertheless, as pointed out in Ref. [Put20], even in absence of Raman
coupling, the system is a two-component mixture that exhibits two broken symmetries.
Therefore, no additional branch appears in the supersolid phase.

Supersolidity is not a phenomenon restricted to these platforms, but these systems share
some common properties. For instance, the roton mode and its softening are present in all
these three platforms together with the presence in the excitation spectra of two or more
Goldstone modes. This section focused on the aforemoentioned three platforms, but other
systems are under investigation and could demonstrate in the future supersolid properties,
see e.g., [Bon12]. We note that, a roton-maxon excitation spectrum has also been observed
in another platform, namely in quantum gases in shaken optical lattices [Ha15].
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3.5 Publication: Long-lived and transient supersolid behaviors in
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L. Chomaz,1 D. Petter,1 P. Ilzhöfer,1,2 G. Natale,1 A. Trautmann,2 C. Politi,2

G. Durastante,1,2 R. M. W. van Bijnen,2 A. Patscheider,1 M. Sohmen,1,2 M. J. Mark,1,2

and F. Ferlaino1,2

1 Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
2 Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissen-
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By combining theory and experiments, we demonstrate that dipolar quantum gases of both 166Er and
164Dy support a state with supersolid properties, where a spontaneous density modulation and a global
phase coherence coexist. This paradoxical state occurs in a well-defined parameter range, separating the
phases of a regular Bose-Einstein condensate and of an insulating droplet array, and is rooted in the roton
mode softening, on the one side, and in the stabilization driven by quantum fluctuations, on the other side.
Here, we identify the parameter regime for each of the three phases. In the experiment, we rely on a detailed
analysis of the interference patterns resulting from the free expansion of the gas, quantifying both its
density modulation and its global phase coherence. Reaching the phases via a slow interaction tuning,
starting from a stable condensate, we observe that 166Er and 164Dy exhibit a striking difference in the
lifetime of the supersolid properties, due to the different atom loss rates in the two systems. Indeed, while in
166Er the supersolid behavior survives only a few tens of milliseconds, we observe coherent density
modulations for more than 150 ms in 164Dy. Building on this long lifetime, we demonstrate an alternative
path to reach the supersolid regime, relying solely on evaporative cooling starting from a thermal gas.

DOI: 10.1103/PhysRevX.9.021012 Subject Areas: Atomic and Molecular Physics,
Condensed Matter Physics,
Quantum Physics

I. INTRODUCTION

Supersolidity is a paradoxical quantum phase of matter
where both crystalline and superfluid order coexist [1–3].
Such a counterintuitive phase, featuring rather antithetic
properties, has been originally considered for quantum
crystals with mobile bosonic vacancies, the latter being
responsible for the superfluid order. Solid 4He has long
been considered a prime system to observe such a phe-
nomenon [4,5]. However, after decades of theoretical and
experimental efforts, an unambiguous proof of superso-
lidity in solid 4He is still missing [6,7].
In search of more favorable and controllable systems,

ultracold atoms emerged as a very promising candidate,
thanks to their highly tunable interactions. Theoretical
works point to the existence of a supersolid ground state
in different cold-atom settings, including dipolar [8]

and Rydberg particles [9,10], cold atoms with a soft-
core potential [11], or lattice-confined systems [7].
Breakthrough experiments with Bose-Einstein condensates
(BECs) coupled to light have recently demonstrated a state
with supersolid properties [12,13]. While in these systems
indeed two continuous symmetries are broken, the crystal
periodicity is set by the laser wavelength, making the
supersolid incompressible.
Another key notion concerns the close relation between a

possible transition to a supersolid ground state and the
existence of a local energy minimum at large momentum
in the excitation spectrum of a nonmodulated superfluid,
known as the roton mode [14]. Since excitations corre-
sponding to a periodic density modulation at the roton
wavelength are energetically favored, the existence of this
mode indicates the system’s tendency to crystallize [15]
and it is predicted to favor a transition to a supersolid
ground state [4,5,9].
Remarkably, BECs of highly magnetic atoms, in which

the particles interact through the long-range and anisotropic
dipole-dipole interaction (DDI), appear to gather several
key ingredients for realizing a supersolid phase. First,
as predicted more than 15 years ago [16,17] and recently
demonstrated in experiments [18,19], the partial attraction
in momentum space due to the DDI gives rise to a roton
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minimum. The corresponding excitation energy, i.e., the
roton gap, can be tuned in the experiments down to
vanishing values. Here, the excitation spectrum softens
at the roton momentum and the system becomes unstable.
Second, there is a nontrivial interplay between the trap
geometry and the phase diagram of a dipolar BEC. For
instance, our recent observations have pointed out the
advantage of axially elongated trap geometries (i.e., cigar
shaped) compared to the typically considered cylindrically
symmetric ones (i.e., pancake shaped) in enhancing the
visibility of the roton excitation in experiments. Last but
not least, while the concept of a fully softened mode is
typically related to instabilities and disruption of a coherent
quantum phase, groundbreaking works in the quantum-gas
community have demonstrated that quantum fluctuations
can play a crucial role in stabilizing a dipolar BEC [20–26].
Such a stabilization mechanism enables the existence,
beyond the mean-field instability, of a variety of stable
ground states, from a single macrodroplet [22,24,27] to
striped phases [28], and droplet crystals [29]; see also
related works [30–33]. For multidroplet ground states,
efforts have been devoted to understanding if a phase
coherence among ground-state droplets could be estab-
lished [28,29]. However, previous experiments with 164Dy
have shown the absence of phase coherence across the
droplets [28], probably due to the limited atom numbers.
Droplet ground states, quantum stabilization, and dipolar

rotons have caused a huge amount of excitement with very
recent advancements adding key pieces of information to
the supersolid scenario. The quench experiments in an
166Er BEC at the roton instability have revealed out-of-
equilibrium modulated states with an early-time phase
coherence over a timescale shorter than a quarter of the
oscillation period along the weak-trap axis [18]. In the same
work, it has been suggested that the roton softening
combined with the quantum stabilization mechanism
may open a promising route towards a supersolid ground
state. A first confirmation came from a recent theoretical
work [34], considering an Er BEC in an infinite elongated
trap with periodic boundary conditions and tight transverse
confinement. The supersolid phase appears to exist within a
narrow region in interaction strength, separating a roton
excitation with a vanishing energy and an incoherent
assembly of insulating droplets. Almost simultaneously,
experiments with 162Dy BECs in a shallow elongated trap,
performing a slow tuning of the contact interaction,
reported on the production of stripe states with phase
coherence persisting up to half of the weak trapping period
[35]. More recently, such observations have been con-
firmed in another 162Dy experiment [36]. Here, theoretical
calculations showed the existence of a phase-coherent
droplet ground state, linking the experimental findings to
the realization of a state with supersolid properties. The
results on 162Dy show, however, transient supersolid prop-
erties whose lifetime is limited by fast inelastic losses

caused by three-body collisions [35,36]. These realizations
raise the crucial question of whether a long-lived or
stationary supersolid state can be created despite the
usually non-negligble atom losses and the crossing of a
discontinuous phase transition, which inherently creates
excitations in the system.
In this work, we study both experimentally and theo-

retically the phase diagram of degenerate gases of highly
magnetic atoms beyond the roton softening. Our inves-
tigations are carried out using two different experimental
setups producing BECs of 166Er [22,37] and of 164Dy [38]
and rely on a fine-tuning of the contact-interaction strength
in both systems. In the regime of interest, these two atomic
species have different contact-interaction scattering lengths
as, whose precise dependence on the magnetic field is
known only for Er [18,22,39], and different three-body-loss
rate coefficients. Moreover, Er and Dy possess different
magnetic moments μ and masses m, yielding the dipolar
lengths, add ¼ μ0μ

2m=12πℏ2, of 65.5a0 and 131a0, respec-
tively. Here, μ0 is the vacuum permeability, ℏ ¼ h=2π the
reduced Planck constant, and a0 the Bohr radius. For both
systems, we find states showing hallmarks of supersolidity,
namely, the coexistence of density modulation and global
phase coherence. For such states, we quantify the extent of
the as parameter range for their existence and study their
lifetime. For 166Er, we find results very similar to the one
recently reported for 162Dy [35,36], both systems being
limited by strong three-body losses, which destroy the
supersolid properties in about half of a trap period.
However, for 164Dy, we have identified an advantageous
magnetic-field region where losses are very low and large
BECs can be created. In this condition, we observe that the
supersolid properties persist over a remarkably long time,
well exceeding the trap period. Based on such a high
stability, we finally demonstrate a novel route to reach the
supersolid state, based on evaporative cooling from a
thermal gas.

II. THEORETICAL DESCRIPTION

As a first step in our study of the supersolid phase in
dipolar BECs, we compute the ground-state phase diagram
for both 166Er and 164Dy quantum gases. The gases are
confined in a cigar-shaped harmonic trap, as illustrated in
Fig. 1(a). Our theory is based on numerical calculations of
the extended Gross-Pitaevskii equation [40], which
includes our anisotropic trapping potential, the short-range
contact and long-range dipolar interactions at a mean-field
level, as well as the first-order beyond-mean-field correc-
tion in the form of a Lee-Huang-Yang (LHY) term
[18,22–24,27]. We note that, while both the exact strength
of the LHY term and its dependence on the gas character-
istics are under debate [18,19,25,31,41], the importance of
such a term, scaling with a higher power in density, is
essential for stabilizing states beyond the mean-field
instability [18,25,41]; see also Refs. [8,42–44].
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Our theoretical results are summarized in Fig. 1. By
varying the condensed-atom number N and as, the phase
diagram shows three very distinct phases. To illustrate
them, we first describe the evolution of the integrated in situ
density profile nðyÞ with fixed N for varying as, Fig. 1(b).
The first phase, appearing at large as, resembles a regular
dilute BEC. It corresponds to a nonmodulated density
profile of low peak density and large axial size σy exceed-
ing several times the corresponding harmonic oscillator
length (ly ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωy

p
); see Fig. 1(e) and the region

denoted BEC in Figs. 1(f) and 1(g). The second phase
appears when decreasing as down to a certain critical value,
a�s . Here, the system undergoes an abrupt transition to a
periodic density-modulated ground state, consisting of an
array of overlapping narrow droplets, each of high peak
density. Because the droplets are coupled to each other via a
density overlap, later quantified in terms of the link strength
S, particles can tunnel from one droplet to a neighboring
one, establishing a global phase coherence across the cloud;
see Fig. 1(d). Such a phase, in which periodic density
modulation and phase coherence coexist, is identified as
the supersolid (SSP) one [10,34]; see the SSP region in
Figs. 1(f) and 1(g). When further decreasing as, we observe
a fast reduction of the density overlap, which eventually
vanishes; see Fig. 1(c). Here, the droplets become fully
separated. Under realistic experimental conditions, it is
expected that the phase relation between such droplets
cannot be maintained; see later discussion. We identify this
third phase as the one of an insulating droplet (ID) array

[27,28,45]; see the ID region in Figs. 1(f) and 1(g). For low
N, we find a single droplet of high peak density, as in
Refs. [24,27]; see dark blue region in Fig. 1(f). Generally
speaking, our calculations show that the number of droplets
in the array decreases with lowering as or N. The existence
of these three phases (BEC, SSP, ID) is consistent with
recent calculations considering an infinitely elongated
Er BEC [34] and a cigar-shaped 162Dy BEC [36], illustrat-
ing the generality of this behavior in dipolar gases.
To study the supersolid character of the density-modu-

lated phases, we compute the average of the wave function
overlap between neighboring droplets S. As an ansatz to
extract S, we use a Gaussian function to describe the wave
function of each individual droplet. This is found to be an
appropriate description from an analysis of the density
profiles of Figs. 1(b)–1(d); see also Ref. [46]. For two
droplets at a distance d and of identical Gaussian widths σy
along the array direction, S is simply S ¼ expð−d2=4σ2yÞ.
Here, we generalize the computation of the wave function
overlap to account for the difference in widths and
amplitudes among neighboring droplets. This analysis
allows us to distinguish between the two types of modu-
lated ground states, SSP and ID in Figs. 1(f) and 1(g).
Within the Josephson-junction picture [47–49], the tunnel-
ing rate of atoms between neighboring droplets depends on
the wave function overlap, and an estimate for the single-
particle tunneling rate can be derived within the Gaussian
approximation [46]; see also Ref. [40]. The ID phase
corresponds to vanishingly small values of S, yielding
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FIG. 1. Phase diagram of an 166Er and a 164Dy dipolar BEC in a cigar-shaped trap. (a) Illustration of the trap geometry with atomic
dipoles oriented along z. (b) Integrated density profile as a function of as for an 166Er ground state of N ¼ 5 × 104. In the color bar, the
density scale is upper limited to 4 × 104 μm−1 in order to enhance the visibility in the supersolid regime. (c)–(e) Exemplary density
profiles for an insulating droplet state (ID) at as ¼ 49a0, for a state with supersolid properties (SSP) at 51a0, and for a BEC at 52a0,
respectively. (f),(g) Phase diagrams for 166Er and 164Dy for trap frequencies ωx;y;z ¼ 2π × ð227; 31.5; 151Þ and 2π × ð225; 37; 135Þ Hz,
respectively. The gray color identifies ground states with a single peak in nðyÞ of large Gaussian width, σy > 2ly. The dark blue region
in (f) shows the region where nðyÞ exhibits a single sharp peak, σy ≤ 2ly, and no density modulation. The red-to-blue color map shows S
in the case of a density-modulated nðyÞ. In (g) the color map is upper limited to use the same color code as in (f) and to enhance visibility
in the low-N regime. The inset in (g) shows the calculated density profile for 164Dy at N ¼ 7 × 104 and as ¼ 91a0.
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tunneling times extremely long compared to any other
relevant timescale. In contrast, the supersolid phase is
identified by a substantial value of S, with a correspond-
ingly short tunneling time.
As shown in Figs. 1(f) and 1(g), a comparative analysis

of the phase diagram for 166Er and 164Dy reveals similarities
between the two species (see also Ref. [36]). A supersolid
phase is found for sufficiently high N, in a narrow region
of as, upper bounded by the critical value as�ðNÞ. For
intermediate N, a�s increases with increasing N. We note
that, for low N, the nonmodulated BEC evolves directly
into a single droplet state for decreasing as [50]. In this
case, no supersolid phase is found in between; see also
Refs. [24,27]. Despite the general similarities, we see that
the supersolid phase for 164Dy appears for lower atom
number than for Er and has a larger extension in as. This is
mainly due to the different add and strength of the LHY
term. We note that, at large N and for decreasing as, Dy
exhibits ground states with a density modulation appearing
first in the wings, which then progresses inwards until a
substantial modulation over the whole cloud is established
[51]; see inset of Fig. 1(g). In this regime, we also observe
that a�s decreases with increasing N. These types of states
have not been previously reported and, although challeng-
ing to access in experiments because of the large N, they
deserve further theoretical investigations.

III. EXPERIMENTAL SEQUENCE
FOR 166Er AND 164Dy

To experimentally access the above-discussed physics, we
produce dipolar BECs of either 166Er or 164Dy atoms. These
two systems are created in different setups and below we
summarize the main experimental steps; see also Ref. [40].
Erbium.—We prepare a stable 166Er BEC following

the scheme of Ref. [18]. At the end of the preparation,
the Er BEC contains about N ¼ 8 × 104 atoms at
as ¼ 64.5a0. The sample is confined in a cigar-shaped
optical dipole trap with harmonic frequencies ωx;y;z ¼
2π × ð227; 31.5; 151Þ Hz. A homogeneous magnetic field
B polarizes the sample along z and controls the value of as
via a magnetic Feshbach resonance (FR) [18,22,40]. Our
measurements start by linearly ramping down as within
20 ms and waiting an additional 15 ms so that as reaches its
target value [40]. We note that ramping times between 20
and 60 ms have been tested in the experiment and we do not
record a significant difference in the system’s behavior.
After the 15-ms stabilization time, we then hold the sample
for a variable time th before switching off the trap. Finally,
we let the cloud expand for 30 ms and perform absorption
imaging along the z (vertical) direction, from which we
extract the density distribution of the cloud in momentum
space, nðkx; kyÞ.
Dysprosium.—The experimental procedure to create a

164Dy BEC follows the one described in Ref. [38]; see also

Ref. [40]. Similarly to Er, the Dy BEC is also confined in a
cigar-shaped optical dipole trap and a homogeneous
magnetic field B sets the quantization axis along z and
the value of as. For Dy, we will discuss our results in
terms of magnetic field B, since the as-to-B conversion is
not well known in the magnetic-field range considered
[25,40,41,52]. In a first set of measurements, we first
produce a stable BEC of about N ¼ 3.5 × 104 condensed
atoms at a magnetic field of B ¼ 2.5 G and then probe the
phase diagram by tuning as. Here, before ramping the
magnetic field to access the interesting as regions, we
slowly increase the power of the trapping beams within
200 ms. The final trap frequencies are ωx;y;z ¼ 2π ×
ð300; 16; 222Þ Hz. After preparing a stable BEC, we ramp
B to the desired value within 20 ms and hold the sample for
th [40]. In a second set of measurements, we study a
completely different approach to reach the supersolid state.
As discussed later, here we first prepare a thermal sample at
a B value where supersolid properties are observed and then
further cool the sample until a transition to a coherent
droplet-array state is reached. In both cases, at the end
of the experimental sequence, we perform absorption
imaging after typically 27 ms of time-of-flight (TOF)
expansion. The imaging beam propagates horizontally
under an angle α of ≈45° with respect to the weak axis
of the trap (y). From the TOF images, we thus extract
nðkY; kzÞ with kY ¼ cosðαÞky þ sinðαÞkx.
A special property of 164Dy is that its background

scattering length is smaller than add. This allows us to
enter the supersolid regime without the need of setting B
close to a FR, as is done for 166Er and 162Dy, which
typically causes severe atom losses due to increased three-
body-loss coefficients. In contrast, in the case of 164Dy, the
supersolid regime is reached by ramping B away from the
FR pole used to produce the stable BEC via evaporative
cooling, as the as range of Fig. 1(g) lies close to the
background as reported in Ref. [52]; see also Ref. [40]. At
the background level, three-body-loss coefficients below
1.3 × 10−41 m6 s−1 have been reported for 164Dy [25].

IV. DENSITY MODULATION AND
PHASE COHERENCE

The coexistence of density modulation and phase coher-
ence is the key feature that characterizes the supersolid
phase and allows us to discriminate it from the BEC and ID
cases. To experimentally probe this aspect in our dipolar
quantum gases, we record their density distribution after a
TOF expansion for various values of as across the phase
diagram. As for a BEC in a weak optical lattice [53] or for
an array of BECs [54–56], the appearance of interference
patterns in the TOF images is associated with a density
modulation of the in situ atomic distribution. Moreover, the
shot-to-shot reproducibility of the patterns (in amplitude
and position) and the persistence of fringes in averaged
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pictures, obtained from many repeated images taken under
the same experimental conditions, reveals the presence of
phase coherence across the sample [56].
Figure 2 exemplifies snapshots of the TOF distributions

for Er, measured at three different as values; see
Figs. 2(a)–2(c). Even if very close in scattering length,
the recorded nðkx; kyÞ shows a dramatic change in behavior.
For as ¼ 54.7ð2Þa0, we observe a nonmodulated distribu-
tion with a density profile characteristic of a dilute BEC.
When lowering as to 53.8ð2Þa0, we observe the appearance
of an interference pattern in the density distribution,
consisting of a high central peak and two almost symmetric
low-density side peaks [57]. Remarkably, the observed
pattern is very reproducible with a high shot-to-shot
stability, as shown in the repeated single snapshots and
in the average image [Figs. 2(b) and 2(e)]. This behavior
indicates a coexistence of density modulation and global
phase coherence in the in situ state, as expected in the
supersolid phase. This observation is consistent with
our previous quench experiments [18] and with the recent
162Dy experiments [35,36]. When further lowering as to
53.3ð2Þa0, complicated patterns develop with fringes
varying from shot to shot in number, position, and
amplitude, signaling the persistence of in situ density
modulation. However, the interference pattern is com-
pletely washed out in the averaged density profiles
[Fig. 2(f)], pointing to the absence of a global phase

coherence. We identify this behavior as the one of
ID states.
Toy model—To get an intuitive understanding of the

interplay between density modulation and phase coherence
and to estimate the role of the different sources of
fluctuations in our experiment, we here develop a simple
toy model, which is inspired by Ref. [56]; see also
Ref. [40]. In our model, the initial state is an array of
ND droplets containing in total N atoms. Each droplet is
described by a one-dimensional Gaussian wave function
ψ iðyÞ of amplitude αi, phase ϕi, width σi, and center yi. To
account for fluctuations in the experiments, we allow αi,
di ¼ yi − yi−1, and σi to vary by 10% around their expect-
ation values. The spread of the phases ϕi among the
droplets is treated specially as it controls the global phase
coherence of the array. By fixing ϕi ¼ 0 for each droplet or
by setting a random distribution of ϕi, we range from full
phase coherence to the incoherent cases. Therefore, the
degree of phase incoherence can be varied by changing the
standard deviation of the distribution of ϕi.
To mimic our experiment, we compute the free evolution

of each individual ψ i over 30 ms, and then compute the
axial distribution nðy; tÞ ¼ jPiψ iðy; tÞj2, from which we
extract the momentum distribution nðkyÞ, also accounting
for the finite imaging resolution [40]. For each computation
run, we randomly draw ND values for ϕi, as well as of σi,
di, and αi, and extract nðkyÞ. We then collect a set of nðkyÞ

-6 -4 -2 0 2 4 6
0
2
4
6
8

10
12

0

5

10

15

20

25 x103

-6 -4 -2 0 2 4 6

0
1
2
3
4
5
6(a) (d)

(b) (e)

(c) (f)

(g) (j)

0

1

2

3

4

0

0.5

1

1.5

2

2.5

-6 -4 -2 0 2 4 6

-6
-4
-2
0
2
4
6

-6 -4 -2 0 2 4 6-6 -4 -2 0 2 4 6

-6
-4
-2
0
2
4
6

-6
-4
-2
0
2
4
6

-6 -4 -2 0 2 4 6
0

1

2

3

4

5

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

-4 -2 0 2 4

0

1

2

3

4

5

0
2
4
6
8

10
12
14

k y 
(µ

m
-1

)
k y 

(µ
m

-1
)

k y 
(µ

m
-1

)

k
x

(µm-1) k
x

(µm-1) k
x

(µm-1) k
x

(µm-1)

n (103  µm2)

y (µm) k
y

(µm-1) k
y

(µm-1)

n 
(µ

m
)

n 
(µ

m
)

n 
(µ

m
)

x104 x104

(m)

(h) (k) (n)

(i) (l) (o)
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by drawing these values multiple times using the same
statistical parameters and compute the expectation value,
hnðkyÞi; see Figs. 2(j)–2(l). The angled brackets denote the
ensemble average.
The results of our toy model show large similarity with

the observed behavior in the experiment. In particular,
while for each single realization one can clearly distinguish
multipeak structures regardless of the degree of phase
coherence between the droplets, the visibility of the
interference pattern in the averaged nðkyÞ survives only
if the standard deviation of the phase fluctuations between
droplets is small (roughly, below 0.3π). In the incoherent
case, we note that the shape of the patterns strongly varies
from shot to shot. Interestingly, the toy model also shows
that the visibility of the coherent peaks in the average
images is robust against the typical shot-to-shot fluctua-
tions in droplet size, amplitude, and distance that occur in
the experiments; see Figs. 2(j) and 2(k).
Probing density modulation and phase coherence.—To

separate and quantify the information on the in situ density
modulation and its phase coherence,we analyze themeasured
interference patterns in Fourier space [36,58–60]. Here, we
extract two distinct averaged density profiles, nM and nΦ.
Their structures at finite y spatial frequency (i.e., in Fourier
space) quantify the two abovementioned properties.
More precisely, we perform a Fourier transform (FT) of

the integrated momentum distributions nðkyÞ denoted
F ½n�ðyÞ. Generally speaking, modulations in nðkyÞ induce
peaks at finite spatial frequency, y ¼ y�, in the FT norm,
jF ½n�ðyÞj; see Figs. 2(g)–2(i) and 2(m)–2(o). Following the
above discussion (see also Refs. [56,61]), such peaks in an
individual realization hence reveal a density modulation of
the corresponding in situ state, with a wavelength roughly
equal to y�. Consequently, we consider the average of the
FT norm of the individual images, nMðyÞ ¼ hjF ½n�ðyÞji, as
the first profile of interest. The peaks of nM at finite y then
indicate the mere existence of an in situ density modulation
of roughly constant spacing within the different realiza-
tions. As the second profile of interest, we use the FT
norm of the average profile hnðkyÞi, nΦðyÞ ¼ jF ½hni�ðyÞj.
Connecting to our previous discussion, the peaks of nΦ at
finite y point to the persistence of a modulation in the
average hnðkyÞi, which we identified as a hallmark for a
global phase coherence within the density-modulated state.
In particular, we point out that a perfect phase coherence,
implying identical interference patterns in all the individual
realizations, yields nM ¼ nΦ and, thus, identical peaks
at finite y in both profiles. We note that, by linearity, nΦ
also matches the norm of the average of the full FT
of the individual images, i.e., nΦðyÞ ¼ jhF ½n�ðyÞij; see
also Ref. [40].
Figures 2(g)–2(i) and 2(m)–2(o) demonstrate the sig-

nificance of our FT analysis scheme by applying it
to the momentum distributions from the experiment
[Figs. 2(d)–2(f)] and the momentum distributions from

the toy model [Figs. 2(j)–2(l)], respectively. As expected,
for the BEC case, both nM and nΦ show a single peak at
zero spatial frequency, y ¼ 0, characterizing the absence of
density modulation, Fig. 2(g). In the case of phase-coherent
droplets, Fig. 2(e), we observe that nM and nΦ are
superimposed and both show two symmetric side peaks
at finite y, in addition to a dominant peak at y ¼ 0; see
Fig. 2(h). In the incoherent droplet case, we find that, while
nM still shows side peaks at finite y, the ones in nΦ wash
out from the averaging, Figs. 2(f), 2(i), 2(l), and 2(o). For
both coherent and incoherent droplet arrays, the toy-model
results show behaviors matching the above description,
providing a further justification of our FT analysis scheme;
see Figs. 2(j)–2(o). Our toy model additionally proves two
interesting features. First, it shows that the equality
nM ¼ nΦ, revealing the global phase coherence of a
density-modulated state, is remarkably robust to noise in
the structure of the droplet arrays; see Figs. 2(j) and 2(m).
Second, our toy model, however, shows that phase fluc-
tuations across the droplet array on the order of 0.2π
standard deviation are already sufficient to make nΦ and
nM deviate from each other; see Figs. 2(k) and 2(n). The
incoherent behavior is also associated with strong varia-
tions in the side peak amplitude of the individual realiza-
tions of jF ½n�j, connecting, e.g., to the observations
of Ref. [36].
Finally, to quantify the density modulation and the

phase coherence, we fit a three-Gaussian function to both
nMðyÞ and nΦðyÞ and extract the amplitudes of the
finite-spatial-frequency peaks, AM and AΦ, for both dis-
tributions, respectively. Note that for a BEC, which is a
phase-coherent state, AΦ will be zero since it probes
only finite-spatial-frequency peaks; see Figs. 2(g)–2(i)
and 2(m)–2(o).

V. CHARACTERIZATION OF THE
SUPERSOLID STATE

We are now in the position to study two key aspects,
namely, (i) the evolution of the density modulation and
phase coherence across the BEC-supersolid-ID phases and
(ii) the lifetime of the coherent density-modulated state in
the supersolid regime.
Evolution of the supersolid properties across the phase

diagram.—The first type of investigation is conducted with
166Er since, contrary to 164Dy, its scattering length and
dependence on the magnetic field has been precisely
characterized [18,22]. After preparing the sample, we ramp
as to the desired value and study the density patterns as well
as their phase coherence by probing the amplitudes AM
and AΦ as a function of as after th ¼ 5 ms. As shown in
Fig. 3(a), in the BEC region (i.e., for large as), we observe
that both AM and AΦ are almost zero, evidencing the
expected absence of a density modulation in the system. As
soon as as reaches a critical value a�s , the system’s behavior
dramatically changes with a sharp and simultaneous
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increase of both AM and AΦ. While the strength of AM
and AΦ varies with decreasing as—first increasing then
decreasing—we observe that their ratio AΦ=AM remains
constant and close to unity over a narrow as range below a�s
of ≳1a0 width; see the inset of Fig. 3(a). This behavior
pinpoints the coexistence in the system of phase coherence
and density modulation, as predicted to occur in the
supersolid regime. For ðas − a�sÞ < −1a0, we observe that
the two amplitudes depart from each other. Here, while the
density modulation still survives with AM saturating to a
lower finite value, the global phase coherence is lost with
AΦ=AM < 1, as expected in the insulating droplet phase.
Note that we also study the evolution of AΦ and AM in
164Dy, but as a function of B, and find a qualitatively similar
behavior.
To get a deeper insight on how our observations compare

to the phase-diagram predictions (see Fig. 1), we study the
link strength S as a function of as; see Fig. 3(b). Since S
quantifies the density overlap between neighboring drop-
lets and is related to the tunneling rate of atoms across the
droplet array, it thus provides information on the ability of

the system to establish or maintain a global phase coher-
ence. In this plot, we set S ¼ 0 in the case where no
modulation is found in the ground state. At the BEC-to-
supersolid transition, i.e., at as ¼ a�s , a density modulation
abruptly appears in the system’s ground state with S taking
a finite value. Here, S is maximal, corresponding to a
density modulation of minimal amplitude. Below the
transition, we observe a progressive decrease of S with
lowering as, pointing to the gradual reduction of the
tunneling rate in the droplet arrays. Close to the transition,
we estimate a large tunneling compared to all other relevant
timescales. However, we expect this rate to become vanish-
ingly small, on the sub-Hertz level [40], when decreasing
as 1–2a0 below a�s. Our observation also hints at the smooth
character of the transition from a supersolid to an ID phase.
The general trend of S, including the extension in as

where it takes nonvanishing values, is similar to the as
behavior of AM and AΦ observed in the experiments [62].
We observe in the experiments that the as dependence at
the BEC-to-supersolid transition appears sharper than at
the supersolid-to-ID interface, potentially suggesting a
different nature of the two transitions. However, more
investigations are needed since atom losses, finite temper-
ature, and finite-size effects can affect, and in particular
smoothen, the observed behavior [64–66]. Moreover,
dynamical effects, induced by, e.g., excitations created at
the crossing of the phase transitions or atom losses during
the time evolution, can also play a substantial role in the
experimental observations, complicating a direct compari-
son with the ground-state calculations. The time dynamics
as well as a different scheme to achieve a state with
supersolid properties is the focus of the remainder of
the paper.
Lifetime of the supersolid properties.—Having identified

the as range in which our dipolar quantum gas exhibits
supersolid properties, the next central question concerns the
stability and lifetime of such a fascinating state. Recent
experiments on 162Dy have shown the transient character of
the supersolid properties, whose lifetime is limited by
three-body losses [35,36]. In these experiments, the phase
coherence is found to survive up to 20 ms after the density
modulation has formed. This time corresponds to about half
of the weak-trap period. Stability is a key issue in the
supersolid regime, especially since the tuning of as, used to
enter this regime, has a twofold consequence on the
inelastic loss rate. First, it gives rise to an increase in
the peak density [see Figs. 1(b)–1(d)] and, second, it may
lead to an enhancement of the three-body-loss coefficient.
We address this question by conducting comparative

studies on 166Er and 164Dy gases. These two species allow
us to tackle two substantially different scattering scenarios.
Indeed, the background value of as for 166Er (as well as for
162Dy) is larger than add. Thus, reaching the supersolid
regime, which occurs at add=as ≈ 1.2–1.4 in our geometry,
requires us to tune B close to the pole of a FR. This tuning
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FIG. 3. Supersolid behavior across the phase diagram. Mea-
sured side peak amplitudes, AΦ (circles) and AM (squares), with
their ratio in inset (a), and calculated link strength S (b) as a
function of as − a�s for 166Er. For nonmodulated states, we set
S ¼ 0 in theory and AΦ=AM ¼ 0 in experiment (crosses in inset).
In the inset, open and closed symbols correspond to AΦ=AM >
0.8 and ≤ 0.8, respectively. In the experiments, we probe the
system at a fixed th ¼ 5 ms. Horizontal error bars are derived
from our experimental uncertainty in B, vertical error bars
corresponding to the statistical uncertainty from the fit are smaller
than the data points. The measured and calculated critical
scattering lengths are a�s ¼ 54.9ð2Þa0 and 51.15a0, respectively
[62]. The numerical results are obtained for the experimental trap
frequencies and for a constant N ¼ 5 × 104 [63].
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also causes an increase of the three-body-loss rate. In
contrast, 164Dy realizes the opposite case with the back-
ground scattering length smaller than add. This feature
brings the important advantage of requiring tuning B away
from the FR pole to reach the supersolid regime. As we
describe below, this important difference in scattering
properties leads to a strikingly longer lifetime of the
164Dy supersolid properties with respect to 166Er and to
the recently observed behavior in 162Dy [35,36].
The measurements proceed as follows. For both 166Er

and 164Dy, we first prepare the quantum gas in the stable
BEC regime and then ramp as to a fixed value in the
supersolid regime for which the system exhibits a state of
coherent droplets (i.e., AΦ=AM ≈ 1); see previous discus-
sion. Finally, we record the TOF images after a variable th
and we extract the time evolution of both AΦ and AM.
The study of these two amplitudes will allow us to answer
the question of whether the droplet structure—i.e., the
density modulation in space—persists in time whereas
the coherence among droplets is lost (AM > AΦ → 0) or
if the density structures themselves vanish in time
(AM ≈ AΦ → 0).
As shown in Fig. 4, for both species, we observe that AΦ

and AM decay almost synchronously with a remarkably
longer lifetime for 164Dy [Fig. 4(b)] than 166Er [Fig. 4(a)].

Interestingly, AΦ and AM remain approximately equal
during the whole time dynamics; see insets of Figs. 4(a)
and 4(b). This behavior indicates that it is the strength of the
density modulation itself and not the phase coherence
among droplets that decays over time. Similar results have
been found theoretically in Ref. [67]. We connect this
decay mainly to three-body losses, especially detrimental
for 166Er, and possible excitations created while crossing
the BEC-to-supersolid phase transition [40]. For compari-
son, the inset of Fig. 4(a) shows also the behavior in the ID
regime for 166Er, where AΦ=AM < 1 already at short th and
remains so during the time evolution [40].
To get a quantitative estimate of the survival time of

the phase-coherent and density-modulated state, we fit a
simple exponential function to AΦ and extract tΦ, defined
as the 1=10 lifetime; see Fig. 4. For 166Er, we extract
tΦ ¼ 38ð6Þ ms. For th > tΦ, the interference patterns
become undetectable in our experiment and we recover
a signal similar to the one of a nonmodulated BEC state [as
in Figs. 2(a) and 2(d)]. These results are consistent with
recent observations of transient supersolid properties in
162Dy [35]. For 164Dy, we observe that the coherent density-
modulated state is remarkably long-lived. Here, we find
tΦ ¼ 152ð13Þ ms.
The striking difference in the lifetime and robustness of

the supersolid properties between 166Er and 164Dy becomes
even more visible when studying tΦ as a function of as
(B for Dy). As shown in Fig. 5, tΦ for Er remains
comparatively low in the investigated supersolid regime
and slightly varies between 20 and 40 ms. Similarly to the
recent studies with 162Dy, this finding reveals the transient
character of the state and opens the question of whether a
stationary supersolid state can be reached with these
species. On the contrary, for 164Dy we observe that tΦ
first increases with B in the range from 1.8 G to about
1.98 G. Then, for B > 1.98 G, tΦ acquires a remarkably
large and almost constant value of about 150 ms over a
wide B range. This shows the long-lived character of the
supersolid properties in our 164Dy quantum gas. We note
that over the investigated range, as is expected to monoto-
nously increase with B [40]. Such a large value of tΦ
exceeds not only the estimated tunneling time across
neighboring droplets but also the weak-axis trap period,
which together set the typical timescale to achieve global
equilibrium and to study collective excitations.

VI. CREATION OF STATES WITH SUPERSOLID
PROPERTIES BY EVAPORATIVE COOLING

The long-lived supersolid properties in 164Dy motivate us
to explore an alternative route to cross the supersolid phase
transition, namely, by evaporative cooling instead of
interaction tuning. For this set of experiments, we have
modified the waists of our trapping beams in order to
achieve quantum degeneracy in tighter traps with respect to
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the one used for condensation in the previous set of
measurements. In this way, the interference peaks in the
supersolid region are already visible without the need to
apply a further compression of the trap since the side-
to-central-peak distance in the momentum distribution
scales roughly as 1=lz [18]. Forced evaporative cooling
is performed by reducing the power of the trapping beams
piecewise linearly in subsequent evaporation steps until a
final trap with frequencies 2π × ð225; 37; 134Þ Hz is
achieved. During the whole evaporation process, which
has an overall duration of about 3 s, the magnetic field is
kept either at B ¼ 2.43 G, where we observe long-lived
interference patterns, or at B ¼ 2.55 G, where we produce
a stable nonmodulated BEC. We note that these two B
values are very close without any FR lying in between [40].
Figure 6 shows the phase transition from a thermal cloud

to a final state with supersolid properties by evaporative
cooling. In particular, we study the phase transition by
varying the duration of the last evaporation ramp, while
maintaining the initial and final trap-beam power fixed.
This procedure effectively changes the atom number and
temperature in the final trap while keeping the trap
parameters unchanged, which is important to not alter
the final ground-state phase diagram of the system. At the
end of the evaporation, we let the system equilibrate and
thermalize for th ¼ 100 ms, after which we switch off the
trap, let the atoms expand for 26.5 ms, and finally perform
absorption imaging. We record the TOF images for differ-
ent ramp durations, i.e., for different thermalization times.
For a short ramp, too many atoms are lost such that the
critical atom number for condensation is not reached, and
the atomic distribution remains thermal; see Fig. 6(a).

By increasing the ramp time, the evaporative cooling
becomes more efficient and we observe the appearance of a
bimodal density profile with a narrow and dense peak at the
center, which we identify as a regular BEC; see Fig. 6(b).
By further cooling, the BEC fraction increases and the
characteristic pattern of the supersolid state emerges; see
Figs. 6(c) and 6(d). The observed evaporation process
shows a strikingly different behavior in comparison
with the corresponding situation at B ¼ 2.55 G, where
the usual thermal-to-BEC phase transition is observed; see
Figs. 6(i)–6(l).
We finally probe the lifetime of the supersolid properties

by extracting the time evolution of both the amplitudes AΦ
and AM, as previously discussed. We use the same
experimental sequence as the one in Fig. 6(d)—i.e., 300-
ms duration of the last evaporation ramp and 100 ms of
equilibration time—and subsequently hold the sample in
the trap for a variable th. As shown in Fig. 7(a), we observe
a very long lifetime with both amplitudes staying large and
almost constant over more than 200 ms. At longer holding
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time, we observe a slow decay of AΦ and AM, following the
decay of the atom number. Moreover, during the dynamics,
the ratio AΦ=AM stays constant. The long lifetime of
the phase-coherent density modulation is also directly
visible in the persistence of the interference patterns in
the averaged momentum density profiles [similar to
Fig. 2(e)], both at intermediate and long times; see
Figs. 7(b) and 7(c), respectively. For even longer th, we
cannot resolve anymore interference patterns in the TOF
images. Here, we recover a signal consistent with a regular
BEC of low N.
Achieving the coherent droplet phase via evaporative

cooling is a very powerful alternative path to supersolidity.
We speculate that, for instance, excitations, which might be
important when crossing the phase transitions by inter-
action tuning, may be small or removed by evaporation
when reaching this state kinematically. Other interesting
questions, open to future investigations, are the nature of
the phase transition, the critical atom number, and the role
of noncondensed atoms.

VII. CONCLUSIONS

For both 166Er and 164Dy dipolar quantum gases, we have
identified and studied states showing hallmarks of super-
solidity, namely, global phase coherence and spontaneous
density modulations. These states exist in a narrow scatter-
ing-length region, lying between a regular BEC phase and a
phase of an insulating droplet array. While for 166Er,
similarly to the recently reported 162Dy case [35,36], the
observed supersolid properties fade out over a compara-
tively short time because of atom losses, we find that 164Dy
exhibits remarkably long-lived supersolid properties.
Moreover, we are able to directly create stationary states

with supersolid properties by evaporative cooling, demon-
strating a powerful alternative approach to interaction
tuning on a BEC. This novel technique provides prospects
of creating states with supersolid properties while avoiding
additional excitations and dynamics. The ability to produce
long-lived supersolid states paves the way for future
investigations on quantum fluctuations and many-body
correlations, as well as of collective excitations in such
an intriguing many-body quantum state. A central goal of
these future investigations lies in proving the superfluid
character of this phase, beyond its global phase coherence
[7,34,68–70].
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Note added.—Recently, we became aware of related works
reporting theoretical studies of the ground-state phase
diagram [71,72].
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GROUND STATE CALCULATIONS

We perform numerical calculations of the ground state
following the procedure detailed in the supplementary
information of Ref. [1]. The calculations are based on
the conjugate-gradients technique to minimize the en-
ergy functional of an eGPE [2]. In particular, the eGPE
accounts for the effect of quantum fluctuations, by includ-
ing the LHY term ∆µ[n] = 32g(nas)

3/2(1+3ε2dd/2)/3
√
π

in the system’s Hamiltonian (here g = 4πh̄2as/m and
n = |ψ|2 is the spatial density of the macroscopic state
ψ). ∆µ[n] has been obtained under a local density
approximation in Refs. [3, 4]. The relevance of the
LHY correction has been demonstrated in various stud-
ies of dipolar Bose gases close to the mean-field instabil-
ity [1, 5–9] as it brings an additional repulsive potential,
stabilizing the gas against mean-field collapse at large
density. We note that the exact functional form of the
potential, originating from beyond mean-field effects, has
been questioned by several experimental results in finite-
size trapped systems [1, 9–11], calling for further theory
developments [12].

Our numerical calculations provide us with the three-
dimensional ground-state wavefunctions ψ(r). From this,
we compute the axial in-situ density profile along the
trap’s weak axis, n(y) =

∫
|ψ(r)|2dxdz and find den-

sity profiles, corresponding to the BEC, the supersolid
or the ID phase, that we plot in Fig. 1. From the
density profiles that exhibit a density modulation, we
evaluate S by performing Gaussian fits to each droplet,
i. e. to n(y) with y ranging between two neighboring lo-
cal density minima. From these Gaussian fits, we eval-

uate the sets of centers {y(0)
i }i and widths {σi}i cor-

responding to the macroscopic Gaussian wavefunctions
{ψi}i associated to the individual droplets in the ar-
ray. We then approximate the droplet wavefunction via

ψi(y) ≈
√
n(y ≈ y(0)

i ) = αi exp
(
−(y − y(0)

i )2/2σ2
i

)
with

αi a normalization coefficient such that
∫
|ψi(y)|2dy = 1.

We then evaluate the wavefunction overlap Si between

the neighboring droplets i− 1 and i via:

Si ≡
∫
ψ∗
i−1(y)ψi(y)dy (1)

=

√
2σiσi−1

σ2
i + σ2

i−1

exp

(
− (y

(0)
i − y

(0)
i−1)2

2(σ2
i + σ2

i−1)

)
. (2)

The latter equation is obtained via an analytical evalu-
ation of the Gaussian integral. The characteristic link
strength defined in the paper is then computed by aver-
aging Si over all droplet links in the array: S = 〈Si〉i. In
our calculation, we only consider as droplets all density
peaks of at least 5 % of the global density maximum.

LINK STRENGTH AND ESTIMATE OF
TUNNELING RATE

Generally speaking, the wavefunction overlap between
neighboring droplets relates to a tunneling term, which
sets a particle exchange term between two neighboring
droplets [13–16]. Following the work of Ref. [17], we per-
form a first estimate of the tunneling coefficient by sim-
ply considering the single-particle part of the Hamilto-
nian and evaluate it between two neighboring droplets.
We note that, in our particular setting where the density
modulation is not externally imposed but arises from the
mere interparticle interactions, the inter-droplet interac-
tion may also play a crucial role. To perform a more
precise estimation of the tunneling between droplets, one
would certainly need to properly account for this effect.
Here, we stress that our approach simply gives a rough
idea of the magnitude of tunneling while it does not aim
to be a quantitative description of it. This consideration
calls for further studies making a systematic analysis of
the full Hamiltonian and of the full phase diagram within
the Josephson junction formalism and beyond.

Generalizing the description of Ref. [17] to neighbor-
ing droplets of different sizes and amplitudes, which are
described by a three-dimensional wavefunction ψi(r) ap-
proximated to a three-dimensional Gaussian of widths



2

(σi,x, σi,y, σi,z) with σi,y = σi, our estimate writes:

Ji =
h̄2Si
2m



∑

k=x,y,z

1 +
(
σi,kσi−1,k

`2k

)2

σ2
i,k + σ2

i−1,k

+
(y

(0)
i − y

(0)
i−1)2

2σiσi−1

(σiσi−1/`y)
4 − 1

σ2
i + σ2

i−1

]
, (3)

where `x,y,z =
√
h̄/mωx,y,z are the harmonic oscillator

lengths.
In general, the tunnelling coefficients set two typical

rates relevant for equilibration processes. The first one
is the bare single-particle tunneling rate, which is equal
to Ji/h, while the second accounts for the bosonic en-
hancement from the occupation of the droplet modes
and writes t̃i =

√
NiNi−1|Ji|/h where Ni is the num-

ber of atoms in droplet i. In our analysis, we then define
the average rates over the droplet arrays as characteristic
rates J/h = 〈Ji〉i/h, and t̃ = 〈t̃i〉i; see e.g. [18]. While
the ground state evolves from a BEC to a supersolid to
an ID, the relevant timescale for achieving (global) equi-
librium crosses from being set by the trap frequencies to
the above-mentioned tunneling rates.

Using our approximate model, we here give a first es-
timate of the rates J/h and t̃ as a function of as, for the
parameters of Fig. 1(b-d) of the main text (i.e. Er quan-
tum gas with N = 5 × 104 atoms). Here we find that,
for as = a∗s , J/h ∼ 400 Hz and t̃ ∼ 10 MHz while for
as = a∗s − 2.5 a0, J/h ∼ 10−7 Hz and t̃ ∼ 10−3 Hz.

TOY MODEL FOR THE INTERFERENCE
PATTERN

As described in the main text we use a simple toy
model, adapted from Ref. [18], to identify the main fea-
tures of the TOF interference patterns obtained from an
insitu density-modulated state. As a quick reminder, our
model considers a one-dimensional array of ND Gaus-
sian droplets, described by a single classical field, ψi,
thus neglecting quantum and thermal fluctuations. We
compute the TOF density distribution from the free-
expansion of the individual ψi during a time t via
n(y, t) = |∑i ψi(y, t)|2. In our calculations, we also ac-
count for the finite imaging resolution by convolving the
resulting n(y, t) with a gaussian function of width σim.
Here we allow the characteristics of the individual ψi to
fluctuate. In this aim, we introduce noise on the corre-
sponding parameter with a normal distribution around
its expectation value and with a variable standard devi-
ation (only φi can also have a uniform distribution). We
then perform a Monte-Carlo study and perform ensemble
averages, similar to our experimental analysis procedure.
We note that, in this simple implementation, the noise
on the different parameters – droplet amplitudes, widths
and distances – are uncorrelated.

In the main text, we present results for a single set of
parameters, namely ND = 4, d ≡ 〈di〉i = 2.8µm (mean
droplet distance), σy ≡ 〈σi〉i = 0.56µm (mean droplet
size), t = 30 ms, and σim = 3µm, typical for our exper-
imental Er setting and the corresponding theory expec-
tations in the supersolid regime. 〈·〉i denotes the average
over the droplets. In this section, we have a deeper look
at the impact of the different parameters on both the
TOF signal and our FT analysis. We study both the
fully phase coherent and fully incoherent case, and the
unchanged parameters are set as in Fig. 2(j,m) and (l,o).
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FIG. S1. Toy model realizations with varying number
of droplets ND. We use 100 independent draws, and expec-
tation values d = 2.85µm, σy = 0.56µm (with 10% noise) and
either φi = 0 (a,b,e,f,i,j), or φi uniformly distributed between
0 and 2π (c,d,g,h,k,l). (a–d) ND = 2, (e–h) ND = 3 and (i–l)
ND = 8. (a,c,e,g,i,k) TOF density profiles and (b,d,f,h,j,l)
corresponding FT analysis of the interference patterns, same
color code as Fig .2.

In Fig. S1, we first exemplify the TOF and FT pro-
files for a varying number of droplets, between 2 and 8,
which cover the range of relevant ND over the phase di-
agram of Fig. 1. The results remain remarkably similar
to the realization of Fig. 2 with only slight quantitative
changes. The main difference lies in the individual inter-
ference patterns obtained in the phase incoherent case.
With increasing ND, those profiles become more com-
plex and made of a larger number of peaks (see (c,g,k)).
Yet, in this incoherent case, a similar (non-modulated)
profile is recovered in the averaged n(ky) for all ND.
Additionally, we note that for the coherent case with
ND = 8, the side peaks in the FT analysis (see (j))
become less visible. By performing additional tests, we
attribute this behavior to the limited TOF duration, t,
used in our experiment yielding a typical length scale,√
h̄t/m (= 3.4µm), which becomes small compared to

the system size (≈ (ND − 1)d + σy) for large ND. This
intermediate regime in the TOF expansion leads to more
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complex features, including smaller-sized motifs, in the
interference patterns. Finally, when accounting for our
imaging resolution, it yields a broadening of the structure
observed in the TOF images and less visible peaks in the
FT (see (i)). We note that our experiments, because of
limited N and additional losses, should rather lie in the
regime 2 ≤ ND ≤ 5; see Fig. 1(b).
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FIG. S2. Toy model realizations with varying σy/d.
We use 100 independent draws, with ND = 4, d = 2.85µm
(with 10% noise) and either φi = 0 (a,b,e,f,i,j), or φi uni-
formly distributed between 0 and 2π (c,d,g,h,k,l). For each
realization we also compute the associated mean S. (a–d)
σy/d = 0.1, yielding S = 1.8×10−7 (e–h)σy/d = 0.15, match-
ing S = 1.7×10−4 and (i–l) σy/d = 0.25, matching S = 0.028.
(a,c,e,g,i,k) TOF density profiles and (b,d,f,h,j,l) Correspond-
ing FT analysis of the interference patterns, same color code
as Fig. 2.

We then investigate the evolution of the interference
patterns and their FT analysis for a varying mean droplet
size, σy, while keeping their mean distance, d, fixed. This
study is particularly relevant recalling that, within the
Josephson junction formalism (see main text and cor-
responding section of this Supplemental Material), the
key parameter controlling the tunneling rate between the
droplets is set by the ratio σy/d, and the link strength pa-
rameter that we use to characterize the supersolid regime
scales roughly as exp(−(d/2σy)2). Thus, in our experi-
ment, σy/d is intrinsically expected to decrease with the
scattering length (see Fig. 3). Performing a direct esti-
mate of the average droplet link from the initial state of
our toy model, we find S = 0.004 for the calculations
of Fig. 2(j-o), lying in an expected supersolid regime yet
rather close to the supersolid-to-ID transition. Figure
S2 investigates the effect of smaller and larger values of
σy/d (and consequently of S) on the TOF and FT profiles
while independently assuming phase coherence or inco-
herence. Qualitatively, the features remain similar as in
Fig. 2(j-o). In the coherent case, side peaks are visible in

the individual as well as in the mean n(ky) (see (a,e,i))
and yield side peaks in the FT profiles, with nM ≈ n (see
(b,f,j)). Increasing (decreasing) σ/d mainly results in a
stronger (weaker) signal both in the interference pattern
and their FT analysis. Within our toy model, we find
that, already for σ/d = 0.25, the signal nearly vanishes;
see (i,j). Even if, given the approximations used in our
toy model, this exact value may not fully hold for our
experimental conditions, we expect a similar trend. It is
interesting to keep in mind that this effect may limit our
capacity of detecting an underlying supersolid state via
matter-wave interference in experiments. In the incoher-
ent case, the effect of decreasing σy/d mainly results in
a broader shape of the mean density profile, while it re-
mains non-modulated; see (c,g,k). In the FT analysis nΦ

remains structure-less independently of σy/d while the
structures in nM becomes sharper with decreasing σy/d,
as in the coherent case; see (d,h,l).
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FIG. S3. Toy model realizations allowing noise in
the center position. We use 100 independent draws, with
ND = 4, d = 2.85µm (with 10% noise), σy/d = 0.15 (a–
d) or σy/d = 0.2 (e–h), and either φi = 0 (a,b,e,f,i,j), or φi

uniformly distributed between 0 and 2π (c,d,g,h,k,l). Cen-
ter fluctuation are introduced as normal noise around 0 with
standard deviation of 2µm−1 in situ (a,c,e,g,i,k) TOF den-
sity profiles and (b,d,f,h,j,l) corresponding FT analysis of the
interference patterns, same color code as Fig. 2.

Finally, we investigate how a possible shot-to-shot
noise on the position of the central interference peak
could affect our observables of the density modulation
and phase coherence. In the experiments, such fluctua-
tions may occur, for instance, because of beam-pointing
fluctuations or excitations of the gas. Although we com-
pensate for such effects by recentering the individual im-
ages (see Imaging Analysis section), residual effects may
remain, in particular due to center misestimation in the
mere presence of the interference patterns of interest. To
investigate this aspect, we repeat our toy model calcu-
lations now including noise in the global droplet array
position and using a standard deviation of 2µm for two
values of σy/d; see Fig.S3. Again, qualitatively the ob-
served features remains similar to our prediction in the
main text. The main effect lies in the appearance of a
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small discrepancy in the coherent case between nΦ and
nM , while the structure in the incoherent case remains
similar. As the center misestimation should be the most
severe in the latter case (due to the variability of the
interference patterns observed here), our test shows the
robustness of our analysis procedure against this issue.

IMAGING ANALYSIS: 164Dy AND 166Er

The density distributions in momentum space are ex-
tracted from the TOF images using the free-expansion
expectation. In the Dy case, the thermal component is
subtracted from the individual distribution by cutting
out the central region of the cloud and performing an
isotropic Gaussian fit on the outer region. This sub-
traction is beneficial because of the large thermal frac-
tion. In the 166Er case, such a subtraction is on the
contrary complicated because of the weak thermal com-
ponent and this pre-treatment may lead to improper es-
timation of AM and AΦ in the later analysis. The ob-
tained momentum density distributions are then recen-
tered and integrated numerically along kz(kx) between
[−2.0,+2.0]µm−1 ([−1.28,+1.28]µm−1) to obtain n(kY )
(n(ky)) for 164Dy (166Er). The recentering procedure
uses the result a single Gauss fit to the TOF images.
The fit is performed after convoluting each image with
a Gaussian function of width 0.5µm whose purpose is
to reduce the impact of the interference pattern on the
center estimation [19].

In order to characterise the system’s state, we use the
Fourier transform, F [n](y) of the single density profile,
n(ky). We then compute two average profiles, nM and
nΦ, relying on ensemble average over all measurements
under the same experimental conditions; see below for a
detailed discussion on nM and nΦ. In all the measure-
ments reported in this work we use averages over typically
15 to 100 realizations.

To quantify both the existence of a density modulation
and global phase coherence on top of this modulation, we
fit both nM (y) and nΦ(y) with a triple-Gaussian function,
where one Gaussian accounts for the central peak and the
other Gaussians are accounting for the symmetric side
peaks. The amplitudes of the latter give AM and AΦ,
respectively. The distance between the side peaks and
the central one is allowed to vary between [2.5, 2.7]µm
([2.3, 2.5]µm) in the case of 164Dy (166Er).

DETAILS ON THE FOURIER ANALYSIS

In our analysis we rely on two averaged profiles, named
nM or nΦ, to quantify both the density modulation and
its phase coherence. Here we detail the meaning of the
average performed.

The Fourier transform (FT) of the integrated mo-
mentum distributions, n(ky), which reads F [n](y) =
|F [n](y)| exp(i arg (F [n](y))) sets the ground for our
analysis. As stated in the main text, an in-situ density
modulation of wavelength y∗ yields patterns in n(ky) and
consequently induce peaks at y ≈ y∗, in the FT norm,
|F [n](y)|, see Fig. 2(g-i) and (m-o). Spatial variations of
the phase relation within the above-mentioned density
modulation translate into phase shifts of the interference
patterns, which are stored in the FT argument at y ≈ y∗,
arg (F [n](y∗)); see also Ref. [18, 20].

The first average that we use is nM (y) = 〈|F [n](y)|〉,
i. e. the average of the FT norm of the individual images.
As the phase information contained in arg (F [n](y)) is
discarded from nM when taking the norm, the peaks
in nM probe the mere existence of an insitu density
modulation of roughly constant spacing within the dif-
ferent realizations. The second average of interest is
nΦ(y) = |〈F [n](y)〉|, i. e. the average of the full FT of the
individual images. In contrast to nM , nΦ keeps the phase
information of the individual realizations contained in
arg (F [n](y∗)). Consequently, peaks in nΦ indicate that
the phase relation is maintained over the density modula-
tion, in a similar way for all realizations. Their presence
thus provides information on the global phase coherence
of a density-modulated state.

EXPERIMENTAL SEQUENCE: 164Dy AND 166Er

166Erbium - The BEC of 166Er is prepared similarly to
Refs. [1, 8, 21, 22]. We start from a magneto-optical trap
with 2.4 × 107 166Er atoms at a temperature of 10µK,
spin-polarized in the lowest Zeeman sub-level. In a next
step we load about 3 × 106 atoms into a crossed opti-
cal dipole trap (ODT) operated at 1064 nm. We evap-
oratively cool the atomic cloud by reducing the power
and then increasing the ellipticity of one of the ODT
beams. During the whole evaporation a constant mag-
netic field of B = 1.9 G (as = 80 a0) along z is applied.
We typically achieve BEC with 1.4 × 105 atoms and a
condensed fraction of 70%. In a next step the ODT
is reshaped in 300 ms into the final trapping frequencies
ωx,y,z = 2π×(227, 31.5, 151) Hz. Consecutively, we ramp
B linearly to 0.62 G (64.5 a0) in 50 ms and obtain a BEC
with 8.5× 104 atoms, which are surrounded by 3.5× 104

thermal atoms. This point marks the start of the ramp
to the final as.

164Dysprosium - For the production of a 164Dy BEC
we closely follow the scheme presented in [23]. Starting
from a 3 s loading phase of our 5-beam MOT in open-top
configuration [24], we overlap a 1064 nm single-beam
dipole trap with a 1/e2-waist of about 22µm, for 120 ms.
Eventually, we transfer typically 8×106 atoms utilizing a
time averaging potential technique to increase the spatial
overlap with the MOT. After an initial 1.1 s evaporative
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cooling phase by lowering the power of the beam, we
add a vertically propagating beam, derived from the
same laser, with a 1/e2-waist of about 130µm to form a
crossed optical dipole trap for additional confinement.
Subsequently, we proceed forced evaporative cooling
to reach quantum degeneracy by nearly exponentially
decreasing the laser powers in the two dipole-trap beams
over 3.6 s. We achieve BECs of 164Dy with typically 105

atoms and condensate fractions of about 40%. During
the entire evaporation sequence the magnetic field is
kept constant at 2.5 G pointing along the vertical (z-)
axis.

To be able to condense directly into the supersolid,
we modify the dipole trap to condense at a stronger
confinement of ωx,y,z = 2π × (225, 37, 134) Hz. After a
total evaporative cooling duration of 3.1 s, we achieve
Bose-Einstein condensation at 2.55 G and reach a state
with supersolid properties at 2.43 G, keeping the mag-
netic field constant throughout the entire evaporation
sequence for both cases.

Time of flight and imaging for 166Er and 164Dy - In
order to probe the momentum distribution of the Dy (Er)
gases, we switch off the confining laser beams and let the
atoms expand freely for 18 ms (15 ms), while keeping the
magnetic field constant. Consecutively the amplitude of
B is increased to a fixed amplitude of 5.4 G (0.6 G). In the
case of 164Dy, the magnetic field orientation is rotated
in order to point along the imaging axis. This ensures
constant imaging conditions for different as. After an
additional 9 ms (15 ms) we perform a standard absorption
imaging.

TUNING THE SCATTERING LENGTH IN 166Er
AND 164Dy

166Erbium - All measurements start with a BEC at
64.5 a0. In order to probe the BEC-supersolid-ID region,
we linearly ramp as to its target value in tr = 20 ms
by performing a corresponding ramp in B. Due to a
finite time delay of the magnetic field in our experimental
setup and the highly precise values of as needed for the
experiment, we let the magnetic field stabilize for another
15 ms before th = 0 starts. By this, we ensure that the
residual lowering of as during the entire hold time is <∼
0.3 a0. In the main text, we always give the as at th = 0 .
Furthermore, we estimate our magnetic field uncertainty
to be ±2.5 mG, leading to a ±0.2 a0 uncertainty of as in
our experiments.

To choose the best ramping scheme, we have performed
experiments varying tr from 0.5 ms to 60 ms, ramping to
a fixed as lying in the supersolid regime, and holding for
th = 5 ms after a fixed 15 ms waiting time. We record the
evolution of AΦ as a function of tr; see Fig. S4. When

increasing tr, we first observe that AΦ increases, up to
tr = 20 ms, and then AΦ gradually decreases. The initial
increase can be due to diabatic effects and larger exci-
tation when fast-crossing the phase transition. On the
other hand, the slow decrease at longer tr can be ex-
plained by larger atom loss during the ramp. We then
choose tr = 20 ms as an optimum value where a super-
solid behavior develops and maintains itself over a signif-
icant time while the losses are minimal.
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FIG. S4. Ramp time effect on the supersolid behavior
Measured AΦ for various durations of the scattering-length
ramp with 166Er and a final as = 54.1(2) a0. All measure-
ments include a 15 ms stabilization time after tr and are per-
formed with an additional hold of th = 5 ms.

164Dysprosium - As the value of the background scat-
tering, abg length for 164Dy is still under debate [9, 10,
25], we discuss the experimental settings in terms of mag-
netic field. Yet, to gain a better understanding of the
tunability of as in our experiment, we first perform a Fes-
hbach spectroscopy scan on a BEC at T = 60 nK. After
evaporative cooling at B = 2.5 G, we jump to B varying
from 1 G to 7.5 G and we hold the sample for 100 ms.
Finally, we switch off the trap, let the cloud expand for
26ms and record the total atom number as a function of
B. We then fit the observed loss features with a gaussian
fit to obtain the position B0,i and width ∆Bi of the FRs,
numbered i. We finally use the standard Feshbach res-
onance formula to estimate the as-to-B dependence via
as(B) = abg

∏
i (1−∆Bi/(B −B0,i)). Here we account

for 8 FRs located between 1.2 G and 7.2 G. Depending on
the background scattering length abg, the overall magni-
tude of as(B) changes. We can get an estimate of abg

from literature. In Fig. S5, we use the value of as from
Ref. [25] obtained at 1.58 G close to the B-region inves-
tigated in our experiment, as = 92(8) a0. By reverting



6

the as(B) formula, we set abg = 87(8) a0. For the mea-
surements of Figs. 4-5, we ramp B linearly from 2.5 G in
20 ms to a final value ranging from 1.8 to 2.1 G, for which
we estimate as ranging from 97(9) a0 to 105(10) a0. We
calibrate our magnetic field using RF spectroscopy, with
a stability of about 2 mG. In the Dy case, we do not apply
an additional stabilization time. This is justified because
of the more mellow as-to-B dependence in the B-range
of interest as well as of the wider as-range of the super-
oslid regime (see Fig. 1) compared to the Er case. For the
measurements of Figs. 6–7, we use two B-values, namely
2.43 G and 2.55 G, at which we perform the evaporative
cooling scheme. Here we estimate as = 109(10) a0 and
as = 134(12) a0, respectively.
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FIG. S5. Estimated scattering length tuning in 164Dy
Estimated dependence of as on B for 164Dy. The FR po-
sitions and widths have been extracted from trap-loss spec-
troscopy measurements, the background scattering length is
estimated to abg = 87(8) a0, see text. The blue dashed line
gives an error-estimate considering only the errorbar on abg

from the mere as measurement of Ref. [25] and not account-
ing for uncertainty of the Feshhach scan. For Figs. 4-5, we
use B between 1.8 G and 2.1 G (red area); for Figs. 6–7, we
keep at two constant B-values, namely 2.43 G and 2.55 G (red
arrows).

ATOM LOSSES IN 166Er AND 164Dy

As pointed out in the main text, in the time evolu-
tion of the quantum gases in both the supersolid and the
ID regime, inelastic atom losses play a crucial role. The
atom losses are increased in the above mentioned regime
as (i) higher densities are required so that a stabiliza-
tion under quantum fluctuation effects becomes relevant
and (ii) the magnetic field may need to be tune close to
a FR pole to access the relevant regime of interaction
parameters. (i) is at play for all magnetic species but
more significant for 166Er due to the smaller value of add.
(ii) is relevant for both 166Er and 162Dy but conveniently
avoided for 164Dy thanks to the special short-range prop-

erties of this isotope.
To quantify the role of these losses, we report here

the evolution of the number of condensed atoms, N , as a
function of the hold time in parallel to the phase coherent
character of the density modulation observed. We count
N by fitting the thermal fraction of each individual image
with a two-dimensional Gaussian function. To ensure
that only the thermal atoms are fitted, we mask out the
central region of the cloud associated with the quantum
gas. Afterwards we subtract this fit from the image and
perform a numerical integration of the resulting image
(so called pixel count) to obtain N .
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FIG. S6. atom number and coherence decays in 166Er
Time evolution of N and AΦ for 166Er at different as, in-
cluding points before th = 0 ms in the experiment. The cor-
responding scattering lengths are 53.3(2) a0 (a,b), 54.0(2) a0

(c,d), 54.2(2) a0 (e,f).

166Erbium - In the Er case, a 15 ms stabilization time
is added to ensure that as is reached up to 0.3 a0. Dur-
ing this time, i. e. for th < 0, we suspect that the time-
evolution of the cloud properties is mainly dictated by
the mere evolution of the scattering length. Therefore,
in the main text, we report on the time evolution for
th ≥ 0. We note that because of the narrow as-range
for the supersolid regime, the long stabilization time for
as is crucial. However, because of the significant role of
the atom losses in our system, in particular for 166Er,
the early evolution of N and the cloud’s properties are
intimately connected. Therefore, the early time evolu-
tion at th < 0 is certainly of high importance for our
observations at th ≥ 0.

To fully report on this behavior, we show the evolution
of N and AΦ during both the stabilization and the hold-
ing time in Fig. S6 for three different as values – either in
the ID (a, b) or supersolid regime (c-f). The time evolu-
tion shows significant atom loss, prominent already dur-
ing the stabilization time, and levels off towards a remain-
ing atom number at longer holding times in which we re-
cover small BECs. Simultaneously, in each case reported
here, we observe that during the stabilization time AΦ

increases and a coherent density modulated state grows.
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TABLE I. Extracted 1/10-lifetime of 166Er atom number
decay for th ≥ 0 and remaining atom number at long holding
time for data in Fig. S6.

as(a0) tN (ms) Nr(104) tΦ (ms)

53.3(2) 32(5) 1.03(5) -

54.0(2) 51(9) 1.29(11) 25(6)

54.2(2) 46(12) 1.7(2) 32(9)

This density modulation starts to appear at a typical
atom number of N >∼ 6 × 104 and consecutively decays.
For the lower as = 53.3(2) a0 case, we observe that the
coherent state does not survive the as stabilization time,
and decays faster than the atoms loss; see Fig. S6 (a, b).
This behavior corresponds to the ID case discussed in
the main text. The central point of the present work is
to identify a parameter range where the coherence of the
density modulated state survives for th > 0 and its decay
time scale is similar to the one of the atom loss. In order
to quantify a timescale for the atom number decay, we
fit an exponential decay to th ≥ 0 ms. Here we allow an
offset Nr of the fit, accounting for the BEC recovered at
long holding times. In Table I, we report on the typical
1/10-decay times of the atom number, which are up to
50 ms. These values are of the order as the extracted tΦ,
see Table I and Fig. 5 of the main text. This reveals that
in 166Er the extracted lifetime of the coherent density
modulated states are mainly limited by atom loss.

Furthermore we note that the extracted Nr values for the
recovered BECs are smaller than 2 × 104, which is con-
sistent with the BEC region found in the phase diagram
of Fig. 1(f).

164Dysprosium - Differently from the 166Er case, for
164Dy, we operate in a magnetic-field range in which the
three-body collision coefficients are small and only mod-
erate atom losses occur. This enables the observation
of an unprecendented long-lived supersolid behavior. To
understand the effects limiting the supersolid lifetime, we
study the lifetime of the condensed-atom number for dif-
ferent B. We perform this detailed study for the data of
Fig. 5 of the main text, which are obtained after prepar-
ing a stable BEC and then ramping B to the target value.
Fig. S7 shows the parallel evolution of N and AΦ for three
different magnetic field values 1.8 G, 2.04 G and 2.1 G.
Here we observe that, for all B values, AΦ seems to de-
cay faster than the atom number. This suggests that the
lifetime of the density-modulated state in our 164Dy ex-
periment is not limited by atom losses. To confirm this
observation, we extract the 1/10 lifetimes of both N and
AΦ; see Table II. The values confirm our observation and
shows an atom number lifetime larger than tΦ at least by
a factor of ≈ 5. In addition, we find that the ratio tN/tΦ
varies, indicating that atom losses are not the only mech-

anism limiting the lifetime of the supersolid properties in
Dy.
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FIG. S7. atom number and coherence decays in 164Dy
Time evolution of N and AΦ for 164Dy at different B for the
data of Fig. 5. The corresponding magnetic fields are 1.8 G
(a,b), 2.04 G (c,d), 2.1 G (e,f).

TABLE II. Extracted 1/10-lifetime of 164Dy atom number
decay and AΦ decay for data in Fig. S7.

B (G) tN (ms) tΦ (ms)

1.8 300(12) 12(5)

2.04 728(34) 152(13)

2.1 926(36) 133(25)
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tos, and F. Ferlaino, “Observation of roton mode pop-
ulation in a dipolar quantum gas,” Nat. Phys. 14, 442
(2018).

[2] S. Ronen, D. C. E. Bortolotti, and J. L. Bohn, “Bo-
goliubov modes of a dipolar condensate in a cylindrical
trap,” Phys. Rev. A 74, 013623 (2006).

[3] A. R. P. Lima and A. Pelster, “Quantum fluctuations in
dipolar Bose gases,” Phys. Rev. A 84, 041604 (2011).

[4] A. R. P. Lima and A. Pelster, “Beyond mean-field low-
lying excitations of dipolar Bose gases,” Phys. Rev. A 86,
063609 (2012).
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and T. Pfau, “Self-bound droplets of a dilute magnetic
quantum liquid,” Nature (London) 539, 259–262 (2016).

[10] I. Ferrier-Barbut, M. Wenzel, F. Böttcher, T. Langen,
M. Isoard, S. Stringari, and T. Pfau, “Scissors Mode of
Dipolar Quantum Droplets of Dysprosium Atoms,” Phys.
Rev. Lett. 120, 160402 (2018).

[11] C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas,
P. Cheiney, and L. Tarruell, “Quantum liquid droplets
in a mixture of Bose-Einstein condensates,” Science 359,
301–304 (2018).

[12] V. Cikojevi, L. Vranje Marki, G. E. Astrakharchik, and
J. Boronat, “Universality in ultradilute liquid Bose-Bose
mixtures,” arXiv:1811.04436 (2018).

[13] B. D. Josephson, “Possible new effects in superconductive
tunnelling,” Phys. Lett. 1, 251 – 253 (1962).

[14] A. Barone and G. Patern, Physics and applications of the
Josephson effect (Wiley, New York, NY, 1982).

[15] J. Javanainen, “Oscillatory exchange of atoms between
traps containing Bose condensates,” Phys. Rev. Lett. 57,
3164–3166 (1986).

[16] S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy,
“Coherent oscillations between two weakly coupled bose-
einstein condensates: Josephson effects, π oscillations,
and macroscopic quantum self-trapping,” Phys. Rev. A
59, 620–633 (1999).

[17] M. Wenzel, F. Böttcher, J.-N. Schmidt, M. Eisenmann,
T. Langen, T. Pfau, and I. Ferrier-Barbut, “Anisotropic

Superfluid Behavior of a Dipolar Bose-Einstein Conden-
sate,” Phys. Rev. Lett. 121, 030401 (2018).

[18] Z. Hadzibabic, S. Stock, B. Battelier, V. Bretin, and
J. Dalibard, “Interference of an Array of Independent
Bose-Einstein Condensates,” Phys. Rev. Lett. 93, 180403
(2004).

[19] We note that we have also checked our analysis without
performing the recentering step and the same features
remain. For instance, for our test data of Fig. 2, the effect
being mainly that the side peaks in (e) are more washed
out and a slight difference occurs between nM and nΦ,
both showing still side peaks.

[20] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm,
and J. Schmiedmayer, “Non-equilibrium coherence dy-
namics in one-dimensional Bose gases,” Nature (London)
449, 324 (2007).

[21] K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler,
R. Grimm, and F. Ferlaino, “Bose-Einstein condensation
of Erbium,” Phys. Rev. Lett. 108, 210401 (2012).

[22] D. Petter, G. Natale, R. M. W. van Bijnen, A. Patschei-
der, M. J. Mark, L. Chomaz, and F. Ferlaino, “Probing
the roton excitation spectrum of a stable dipolar Bose
gas,” arXiv:1811.12115 (2018).
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We study the spectrum of elementary excitations of a dipolar Bose gas in a three-dimensional anisotropic
trap across the superfluid-supersolid phase transition. Theoretically, we show that, when entering the
supersolid phase, two distinct excitation branches appear, respectively associated with dominantly crystal
and superfluid excitations. These results confirm infinite-system predictions, showing that finite-size
effects play only a small qualitative role, and connect the two branches to the simultaneous occurrence of
crystal and superfluid orders. Experimentally, we probe compressional excitations in an Er quantum gas
across the phase diagram. While in the Bose-Einstein condensate regime the system exhibits an ordinary
quadrupole oscillation, in the supersolid regime we observe a striking two-frequency response of the
system, related to the two spontaneously broken symmetries.

DOI: 10.1103/PhysRevLett.123.050402

Supersolidity—a paradoxical quantum phase of matter
that combines crystal rigidity and superfluid flow—was
suggested more than half a century ago as a paradigmatic
manifestation of a state in which two continuous sym-
metries are simultaneously broken [1]. In a supersolid, the
spontaneously broken symmetries are the gauge symmetry,
associated with the phase coherence in a superfluid, and the
translational invariance, signalizing crystalline order. The
striking aspect is that, in a supersolid of indistinguishable
bosons, the same particles are participating in developing
such two apparently antithetical, yet coexisting, orders.
Originally predicted in quantum solids with mobile bosonic
vacancies [2–4], the search for supersolidity has fueled
research across different areas of quantum matter from
condensed matter to atomic physics, including quantum
gases with nonlocal interparticle interactions [5–19].
Recent experiments have revealed that axially elongated

dipolar quantum gases can undergo a phase transition from
a regular Bose-Einstein condensate (BEC), possessing a
homogeneous density in the local-density-approximation
sense, to a state with supersolid properties, where density
modulation and global phase coherence coexist [15–17].
Such experiments, complementing the ones with BECs
coupled to light [20–22], have opened a whole set of
fundamental questions, covering the very real meaning of
superfluidity in a supersolid state, its shear transport, and
phase rigidity.
Of particular relevance is the study of the spectrum of

elementary excitations, which governs the system response
to perturbations [23–25]. Typically, phase transitions occur
in concomitance with drastic modifications of the excitation
spectra—as in the case of the emergence of roton excita-
tions in He II or the phononic dispersion for BECs—and

similar dramatic changes are expected when crossing the
superfluid-supersolid transition. Theoretical studies of uni-
form (infinite) gases with periodic boundary conditions and
soft-core [26–28] or dipolar interactions [14,29,30] have
shown two distinct branches appearing in the excitation
spectrum of a supersolid state—one for each broken
symmetry. Their coexistence has been identified as an
unambiguous proof of supersolidity, being the direct
consequence of the simultaneous presence of superfluid
and crystalline orders [2,26,27,31].
An important issue is to understand if these trademarks

survive—and can be measured—in the experimentally
relevant regimes of a finite-size quantum gas, confined
in all three spatial dimensions. In this Letter, we address
these points by performing full spectrum calculations and
by experimentally exciting collective modes in an erbium
quantum gas. Both the theory and experiment show the
existence of two distinct classes of excitations, one con-
nected to crystal modes and the other to phase modes,
providing the finite-size equivalent of the two-branches
spectrum for infinite systems.
In our study, we consider a three-dimensional dipolar

quantum gas confined in an axially elongated (y) harmonic
trap with transverse orientation (z) of the atomic dipoles.
These systems are well described by an extended Gross-
Pitaevskii equation (EGPE), including nonlinear terms,
accounting for contact interactions depending on the scatter-
ing length as, the anisotropic long-range dipole-dipole
interaction (DDI), and quantum fluctuations in the form of
a Lee-Huang-Yang type of correction [12,14–17,19,32–36];
see also Ref. [37]. We calculate ground-state wave functions
ψ0ðrÞ by minimizing the energy functional resulting from
the EGPE using the conjugate-gradients technique [46].
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As shown in Fig. 1 (insets), the ground state evolves with
decreasing as from a regular BEC (a), (b) to a supersolid
state with axial density-wave modulation (c)–(f) and finally
to an insulating array of independent droplets (ID) (g), (h)
[7,14,15,17,27].
The spectrum of elementary excitations is calculated by

numerically solving the Bogoliubov–de Gennes equations,
which are obtained from an expansion of the macro-
scopic wave function as ψðr;tÞ¼½ψ0ðrÞþηðule−iϵlt=ℏþ
v�l e

iϵlt=ℏÞ�e−iμt with η ≪ 1 and linearizing the EGPE around
ψ0 [13,25,46,47]. Here, μ is the ground state’s chemical
potential. By solving the resulting eigenvalue problem,
we find a set of discrete modes, numbered by l, of energy
ϵl ¼ ℏωl and amplitudes ul and vl. We calculate the
dynamic structure factor (DSF) Sðk;ωÞ, which informs
on the system’s response when its density is perturbed at a
given modulation momentum k and with an energy
ℏω [25,48,49]. Whereas in the absence of an external trap
the spectrum is continuous and the DSF is a δ-peak
resonance at the Bogoliubov mode ðωl; klÞ, the confining
potential yields instead a discretization of the excitation
spectrum and a k broadening in Sðk;ωÞ. For a given energy
(i.e., a single mode), finite-size effects may even yield
several peaks in k; see, e.g., three-peak structures at large
energy in Figs. 1(a) and 1(b). For the considered param-
eters, these finite-size effects are more pronounced in Er
than Dy, since the latter exhibits a larger number of maxima
in the density-modulated phases, rendering its excitation
spectrum more reminiscent of the infinite-system case;
see Fig. 1.

Figure 1 shows the calculated excitation spectrum for
ground states in the regular BEC, the supersolid, and the ID
phases for a Dy (upper row) and Er (lower row) quantum
gas. In the BEC regime close to the supersolid transition
[Figs. 1(a) and 1(b)], the spectrum of excitations shows a
single excitation branch with the characteristic phonon-
maxon-roton dispersion of a BEC [50–54], as recently
measured [55]. When the roton fully softens (at as ¼ as�),
the ground state becomes density modulated with a wave
number close to the roton one, krot. Here, the excitation
spectrum develops additional structures, marked by the
appearance of nearly degenerate modes [Figs. 1(c) and
1(d)]. When lowering as, we find that these modes start to
separate in energy, where some harden and the others
soften, and two excitation branches become visible
[Figs. 1(e) and 1(f)]. This result resembles that of infinite
systems, where the broken translational and gauge sym-
metry are each associated with the appearance of one
excitation branch [14,26,27]. Additionally, we observe that
the spectrum acquires a periodic structure, reminiscent of
Brillouin zones in a crystal, with reciprocal lattice constant
k ≃ krot. Modes with an energy higher than the maxon
(energy maximum at k < krot) seem to have a single-
droplet-excitation character, and they will be the subject
of future investigations. When further decreasing as < as�,
the lower-lying branch decreases both in energy and in DSF
values, whereas the opposite occurs for the higher branch.
Eventually, when reaching the ID regime, the lower branch
progressively vanishes, underlying the disappearance of
global superfluidity [Figs. 1(g) and 1(h)].

(a) (c) (e) (g)

(b) (d) (f) (h)

FIG. 1. Axial excitation spectra of a trapped dipolar quantum gas across the BEC-supersolid-ID phase transition. The trap frequencies
are 2π × ð260; 29.6; 171Þ Hz. The upper (lower) row shows calculations for a 164Dy (166Er) quantum gas of 4 × 104 (5 × 104) atoms in
the BEC (a),(b), supersolid (c)–(f), and ID (g),(h) regimes, together with the corresponding ground-state density profiles (insets). (a), (c),
(e), and (g) correspond to as ¼ ð92; 91; 90; 81Þa0, and (b), (d), (f), and (h) to as ¼ ð50.8; 50.5; 50; 48Þa0, respectively. In (e) and (f), the
dashed and dash-dotted lines are guides to the eyes, indicating the two excitation branches. The color map indicates the calculated DSF,
and lz is the harmonic oscillator length along the dipoles’ direction.
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We focus on the properties of the excitation spectrum
in the supersolid regime. The interesting question is
how the two branches relate to the two orders in the
systems, crystal and superfluid. To gain insight, we
study the system’s dynamics when a single mode l is
excited with amplitude η ≪ 1 by writing ψðtÞeiμt ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jψ0j2 þ 2ηδρl cosωlt
p

e−iηδφl sinωlt, in terms of density per-
turbations δρl ¼ ðul þ v�l Þjψ0j and phase perturbations
δφl ¼ ðul − v�l Þ=jψ0j. The subsequent time evolution of
the axial density profile is shown in Figs. 2(a)–2(c) for three
relevant cases. For simplicity, only the two extremes of the
mode oscillation are shown. The mode character can be
understood by noting that phase gradients correspond to
mass currents. Large gradients inside a density peak imply
motion of the density peak [e.g., Fig. 2(a)] and relate to
crystal modes. Large phase gradients between density peaks
signify a superfluid current of particles tunneling from one
density peak to another [e.g., Fig. 2(b)] and are associated
with phase modes. However, in our system, the phase or
crystal mode classification is not strict, andwe find that these
two characters mix; see Figs. 2(a)–2(c). Particularly, we
observe both behaviors simultaneously in Fig. 2(c). Such a
mixing is expected from the long-range nature of the DDI,
coupling density, and position of the peaks [26,27]. Note that
the character of the mode can change with as. For instance,
the mode in Fig. 2(c) develops an almost pure crystal
character for decreasing as. To quantify a mode’s character,
we plot in Fig. 2(d) the DSF spectrum at a fixed as, colored

according to the ratio C of phase variances inside, and
between thedensity peaks [37]. This allows us to differentiate
the dominant character of the two branches, being phase type
for the lower branch and crystal type for the upper one.
To test our predictions, we experimentally study the

collective excitations in an erbium quantum gas across the
BEC-supersolid-ID phases.We prepare a BEC at as ¼ 64a0.
The atoms are confined in an axially elongated optical-
dipole trap of harmonic frequencies 2π × ðνx; νy; νzÞ ¼
2π × (259ð2Þ; 30ð1Þ; 170ð1Þ) Hz and polarized along z by
an external magnetic field; see Refs. [13,17]. To probe our
system, we perform standard absorption imaging after 30ms
of time-of-flight expansion, yielding measurements of the
momentum space density nðkx; kyÞ [37]. Using the tunability
of the contact interaction via magnetic Feshbach resonances
[56], we can prepare the system at desired locations in the
phase diagram in theBEC, supersolid, or IDphaseby linearly
ramping down as in 20 ms to the target value. We then allow
the system to stabilize for 10 ms. At this point, we record an
atom number of typically 5 × 104 for the supersolid regime.
We confirmed the relevant as ranges by repeating the matter-
wave interferometric analysis of Ref. [17].While in the BEC
region the momentum distribution shows a regular, nearly
Gaussian single peak, in the supersolid regime the in-trap
density modulation gives rise to coherent interference
patterns along ky, consisting of a central peak with two
lower-amplitude side peaks; see Fig. 3(a).
After preparing the system in the desired phase, we

excite collective modes in the gas by suddenly reducing the
axial harmonic confinement to 10% of its initial value (i.e.,
νy ≈ 3 Hz) for 1 ms, before restoring it again. The atomic
cloud is subsequently held for a variable time th, before
releasing it from the trap and recording the time evolution
of nðkx; kyÞ. As the lifetime of the supersolid state is limited
to around 40 ms [17], we focus on th ≤ 30 ms. As
expected, in the BEC phase, we predominantly observe
an oscillation of the axial width, connected to the lowest-
lying quadrupole mode [25]. In the supersolid regime, the
situation is more complex; see Figs. 1(c)–1(f). Here,
multiple modes, of both crystal and phase character, can
be simultaneously populated, resulting in a convoluted
dynamics of the interference pattern.
We therefore employ a model-free statistical approach,

known as principal component analysis (PCA) [57], to
study the time evolution of the measured interference
patterns at a fixed as. This method has been successfully
used to study e.g., matter-wave interference [58] and
collective excitations [59] in ultracold-gas experiments.
The PCA analyzes the correlations between pixels in a set
of images, decomposes them into statistically independent
components, and orders these principal components (PCs)
according to their contributions to the overall fluctuations
in the dataset.
In a dataset probing the system dynamics after an

excitation, the PCA can identify the elementary modes

(d)(c)

(a) (b)

FIG. 2. Evolution of three different even modes of the system
calculated for 5 × 104 Er atoms at as ¼ 49.8a0: (a) fourth-,
(b) second-, and (c) third-lowest-lying even modes in energy with
frequencies (67.4, 40.3, 49.8) Hz, corresponding to crystal,
phase, and mixed modes, respectively. Each panel shows n ¼
jψð0; y; 0; tÞj2 for t ¼ π=2ωl and t ¼ 3π=2ωl with η ¼ 0.15 and
the corresponding δφð0; y; 0Þ. (d) DSF for the same setting as in
(a)–(c), where the modes are colored according to their associated
phase (red) or crystal (blue) character via C [37].
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with the PC weights in the individual images exhibiting
oscillations at the mode frequencies [37,59]. We apply the
PCA to the time evolution of the interference patterns after
the trap excitation. Figure 3(b) shows the PCA results in the
supersolid regime at as ¼ 49.8a0. We identify two leading
PCs, which we label as PC1 and PC2. Their weights
oscillate with different amplitudes and at distinct frequen-
cies, namely, 41(1) Hz for PC1 and 52(5) Hz for PC2. The
comparison between the measured frequencies and the
theoretically calculated mode energies indicates that, fol-
lowing our trap excitation, the second- and third-lowest-
lying even modes are simultaneously populated. As shown
in Figs. 2(b) and 2(c), these modes possess a phase and a
mixed character, respectively. Note that we apply an overall
shift of −4.3a0 to the as value for the experimental data; for
more details, see the discussion in Refs. [55,60].
To visualize the role of each PC on the interference-

pattern dynamics, we apply a partial recomposition of the
images, accounting only for the PC of interest; see
Ref. [37]. The effect of PC1 on the axial dynamics is
shown in Fig. 3(c), mainly being an axial breathing of the
central peak, accompanied by weaker in-phase breathing of
the side peaks. Instead, PC2 exhibits a dominant variation

of the side-peak amplitude; see Fig. 3(d). These results
show a good agreement with the calculated time evolutions
of the interference patterns for the second and third even
modes, shown in Figs. 3(e) and 3(f).
Finally, we study the evolution of the modes across the

BEC to supersolid and ID phases. We repeat the collective
excitation measurements for various as, and, using the
PCA, we extract the oscillation frequencies of all the
leading PCs. Figure 4 shows our experimental results
together with the mode tracking from the spectrum calcu-
lations. For a give elementary mode l, we plot ωl as well as
the response amplitude Rl ¼ mω2

yhljŷ2j0i=2ℏωl, which
indicates the probability to be excited by our trap-excitation
scheme. For completeness, the figure shows both even and
odd modes, although only even modes are coupled to our
trap-excitation scheme. Here, j0i and jli denote, respec-
tively, the ground and excited states of interest, and ŷ is the
axial position operator.
In the BEC regime, besides the roton mode that

progressively softens with decreasing as, the other modes
show a regular spacing in energy and are nearly constant
with as. In both the theory and experiment, we observe that
just one mode couples to the trap-excitation scheme. This
mode has a compressional, axial breathing character.
Experimentally, we observe that all the leading PCs
oscillate at the same frequency, suggesting that they
account for the same mode [37]. In this regime, both the
PC frequencies ωl and Rl remain rather constant. At the
supersolid phase transition, reached around as ¼ 50.6a0,
the numerical calculations reveal that different modes
undergo an abrupt change and can mix with each other.

(b)(a)

(d)(c)

(e) (f)

FIG. 3. (a) Example of a measured mean interference pattern in
the renormalized central cut of the density distribution nðkyÞ for
th ¼ 5 ms in the supersolid regime at as ¼ 49.8a0 (filled circles)
and in the BEC regime at as ¼ 51.7a0 (open circles). (b)–(d)
PCA results at as ¼ 49.8a0. (b) Time evolution of the weights of
PC1 (filled circles) and PC2 (open circles) together with their sine
fit. Error bars denote the standard error of the mean. (c),(d)
Evolution of the partially recomposed nðkyÞ accounting for the
population of PC1 (c) and PC2 (d) only. (e),(f) Calculated time
evolution of nðkyÞ from excitation of the mode shown in
Figs. 2(b) and 2(c), respectively, and using η ¼ 0.15.

FIG. 4. Comparison between the mode energy obtained from
the theory calculations and the energies extracted from the PCs
(circles). The gradual color code of the theory lines represents the
relative strength of Rl going from strong (red) to no (gray)
coupling. Error bars denote one standard deviation from the fit.
The background color indicates the BEC, supersolid, and ID
regions (see upper labels), identified using a matter-wave
interferometric analysis of the experimental data [17].
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Their energy and phase or crystal character exhibits a
strong dependence on as. Here, several modes respond to
the trap-excitation scheme, as shown by the value of Rl.
In the PCA, we observe that the leading PCs now oscillate
at distinct frequencies and have different characters (see
also Fig. 3). One set of PCs reduces their frequency when
lowering as, indicating (at least) one phase mode that
softens strongly in the supersolid regime, even below the
trap frequency νy. Another set of PCs shows a frequency
that remains hard when decreasing as. Calculations of C
show that this mode changes character along the phase
diagram and eventually becomes crystal type.
In conclusion, the overall agreement between the experi-

ment and theory confirms the calculations in the supersolid
regime, revealing two distinct branches with respective
crystal and superfluid characters. The trademarks of super-
solidity expected in infinite systems thus carry over to
the finite-size ones currently available in laboratories. The
knowledge of the excitation spectrum will provide the base
for future investigations related to the superfluid properties
and phase rigidity in a supersolid state.
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Calculation of the Bogoliubov Spectrum

Our theory is based on an extended version of the
Gross-Pitaevskii equation (eGPE)

ih̄
∂ψ(r, t)

∂t
=
(
− h̄2∇2

2m
+ V (r) +

∫
dr′U(r− r′)n(r′)

+ ∆µ[n]
)
ψ(r, t), (1)

where ψ(r, t) is the dipolar quantum-gas’ wave function
ψ(r, t). The eGPE includes the kinetic energy, exter-
nal trap potential and the mean-field effect of the inter-
actions [1, 2]. The first three terms of Eq. (1) account
for the kinetic energy, the external harmonic trapping
potential, and the mean-field interactions, respectively.
The latter includes the contact and the dipolar inter-
actions. In order to study the supersolid phase, it is
fundamental to also include a beyond-mean-field correc-
tions in order to stabilize the supersolid state against the
roton instability. This is done by adding a term in the
form of the Lee-Huang-Yang correction, ∆µ[n] [3–13]; see
also [14–17]. This is typically included as a correction to
the chemical potential obtained under the assumption of
local density approximation [18, 19]. However, recent
experimental results have raised the questions about the
range of validity of such a treatment since quantitative
disagreements at a level of few % have been observed
when comparing the theory results with the experimen-
tal findings [6, 20–24]. To the best of our knowledge, this
is still an open question, which will need future addi-
tional theoretical investigations. To compensate for this
effect, throughout this letter, we shift as by −4.3a0. To
calculate the ground-state (GS) wave-function, ψ0(r), we
then minimize the energy functional resulting from the
eGPE using the conjugate-gradients technique [25].

In a next step, we study the Bogoliubov de Gennes
(BdG) excitation spectrum of a dipolar Bose-Einstein
condensate trapped in a harmonic cigar shaped poten-
tial [1, 25]. Our calculations are obtained by expanding
the wavefunction ψ(r, t) around ψ0(r). Here, we write:

ψ(r, t) = (ψ0(r) + ηδψ(r, t)) e−iµt,

where η � 1, µ is the chemical potential of the ground
state and

δψ(r, t) = ule
−iεlt/h̄ + v∗l e

iεlt/h̄.

The spatial modes ul and vl are oscillating in time with
the corresponding frequency ωl = εl/h̄. We then linearize
the eGPE around ψ0 at first order in η. By solving the
set of coupled linear equations, we obtained the discrete
modes, numbered by l, of energy εl and amplitudes ul
and vl. We define the (odd) even parity of the mode
from their amplitude ul and vl being (anti-)symmetric in
y.

In order to illustrate the spectrum, we compute the
dynamic structure factor (DSF), since it directly gives in-
formation about the density response of the system when
perturbed at specific energies and momenta. At T = 0
the DSF is defined as [20, 26]:

S(k, ω′) =
∑

l

∣∣∣∣
∫

dr [u∗l (r) + v∗l (r)] eik·rψ0(r)

∣∣∣∣
2

×

× δ(ω′ − ω), (2)

where the sum is over the different spatial modes and k
is the wave vector. In Fig. 1 and Fig. 2 we plot the DSF
of Eq. (2). For better visualization, we use an energy
broadening of 0.09hνy and 0.12hνy for Fig. 1 and Fig. 2,
respectively, similar to what was done in Ref. [26].

Defining the mode character

Within the Bogoliubov theory and in the linear regime,
the effect of the population of the mode l on the global
state dynamics can be studied using the following expres-
sion [1]

ψ(r, t)eiµt ≈
√
|ψ0(r)|2 + 2ηδρl(r) cosωlte

−iηδϕl(r) sinωlt,

where the density fluctuations δρl = (ul + v∗l ) |ψ0| and
phase fluctuations δϕl = (ul − v∗l )/ |ψ0| have been sepa-
rated.

In order to evaluate the dominant character of each
mode l, we introduce the quantity C. As discussed in
the main text, the crystal and phase mode differentiate
from each other by the spatial region where δϕl varies
the most. For crystal modes, this is inside the density
peaks, resulting e. g. in a center-of-mass motion of one
individual peak, which leads to a change of the crystal
structure. Differently, for phase modes, δϕl changes the
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most between neighboring peaks, signalizing a particle
exchange between peaks and thus a modification of the
atom numbers in the peaks. We quantify these two types
of character by computing the spatial variance of δϕl(r)
inside the density peaks, Vin, and in between them, Vout.
The quantities Vin and Vout are defined as follow.

For a given axial density cut of the GS wave function
|ψ0(0, y, 0)|2, we first define the region inside (between)
the density peaks by identifying the different density
maxima (minima) and number them by j ∈ [1, Nin(out)].
In a next step, we compute the mean distance d between
all density minima to their neighbouring maxima. Fi-
nally, we isolate the region Rj = [−d/3,+d/3] of space
centered around each maxima (minima) and calculate:

Vin(out) =
1

Nin(out)
×

×
Nin(out)∑

j=1

〈|δϕ(0, y, 0)− 〈δϕ(0, y, 0)〉Rj
|2〉Rj

.

The mean 〈· · ·〉Rj is defined for a generic function f as

〈f(y)〉Rj
=

∫

y∈Rj

f(y) dy

/∫

y∈Rj

dy.

The mode character is then evaluated by considering the
ratio C = Vin/Vout. C is large for modes with prevalent
crystal and small for the ones with dominant phase char-
acter. In Fig. 2 (d) we encode the information on C as a
color scale on the DSF spectrum. The same color map is
used to illustrate the modes of the panels (a-c) in Fig. 2,
confirming their correct assignment. For completeness,
we also illustrate in Fig. S1 the modes’ character on the
spectrum of a 164Dy supersolid, using the parameters of
Fig. 1 (e) of the main text.

Applying the principal component analysis to our
data

Dataset for applying the PCA

To identify the excited modes from our experimental
data, we apply a general statistical method called prin-
cipal component analysis (PCA) [27–29] to a set of mea-
sured density distributions after a time-of-flight expan-
sion. For our trap-excitation measurement, a dataset for
the PCA is composed as follow. For each target value
of as, we record the time evolution of the density distri-
bution for holding time, th, between 0 and 30 ms. For
each th, we record between 15 and 30 repeated images,
all together yielding a dataset of Nm >∼ 200 images. Each
experimental run i yields a two-dimensional density dis-
tribution ni(kx, ky). By performing a simple two dimen-
sional Gaussian fit, we extract 71 × 71 pixels region-of-
interest (ROI) centered on the atomic cloud (the pixel’s
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FIG. S1. Characterisation of the excitation modes for
N = 4 × 104 atoms of 164Dy at as = 90 a0 in a trap of fre-
quencies 2π×(260, 29.6, 171) Hz. As in the Er case (Fig. 2 (d)
of the main text), the blue color reveals the dominant crystal
character for the upper branch, whereas the red color shows
the dominant phase character for the lower branch.

width in kx,y is 0.32µm−1). In addition, we post-select
the shots in which the atom number, the axial cloud size
and the transverse cloud size vary by less than 20%, 30%
and 15% than their mean values, respectively.

PCA’s working principle

To apply the PCA, we represent each ROI of a dataset
as a vector ρi(s) where s represent the index of the pixel
(s ∈ [1, Np], Np is the number of pixels in one image). We

compute the mean vector image ρ̄(s) =
∑Nm

i=1 ρi(s)/Nm
and consider the variations of the pixel values in each
vector image compared to ρ̄, δρi(s) = ρi(s) − ρ̄(s). Fi-
nally, we consider the covariance matrix of these varia-
tions Cov(p, s) =

∑Nm

i=1 ρi(s)ρi(p)/(Nm−1), which is real
symmetric. By simply diagonalizing the covariance ma-
trix, the PCA constructs a new basis ofNp vector-images,
called principal components (PCs) and written Cp(s) (p ∈
[1, Np]) in the original pixel basis, that are uncorrelated
one from an other. The PCs satisfy CovCp = λpCp where
λp is the eigenvalue of the covariance matrix associated to
the PC p. The original vector images can be all rewritten
in this new basis as ρi(s) = ρ̄(s)+

∑Ns

p=1 wp,iCp(s), where

wp,i =
∑Np

s=1 Cp(s)ρi(s) is the weight of the component
p. We note that, by converting back the pixel represen-
tation to the original two-dimensional momentum space,
the above decomposition means

ni(kx, ky) = n̄(kx, ky) +

Ns∑

p=1

wp,iCp(kx, ky), (3)
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FIG. S2. Examples of the two leading PCs for our dataset
at as = 50 a0. (a) PC1 reveals a dominant fluctuation of
the interference patterns in the central peak at ky ≈ 0µm−1

(central blue region) with a slighter change of the sidepeaks
at ky ≈ ±2µm−1 (red regions) . (b) PC2 shows fluctuations
in the interference patterns’ sidepeaks around ky ≈ 2µm−1

and no significant change of the central peak.

where Cp(kx, ky) encompasses now the density-
distribution change induced by the PC p. The fact
that the covariance matrix is diagonal in the PC basis
indicates that the PCs correspond to uncorrelated
sources of variations in the dataset. More explicitly, the
coefficients wp,i show no correlations in between different
p. This feature makes the PCA a powerful tool, e. g. to
identify and discriminate between elementary modes
of different frequencies when applied to time-evolution
data, as used in Ref. [29]. An example of the obtained
two leading PCs in the supersolid region is given in
Fig. S2.

Identifying the elementary modes of a quantum gas via the
PCA

We quickly remind the working principle, of the iden-
tification of modes via the PCA. In the linear regime,
the contribution of each mode to density oscillations is
expected to decouple and separate temporal and spatial
variations as:

n(r, t) ≈ n0(r, t) + 2
∑

l

ηδρl(r) cos (ωlt+ φl) , (4)

with φl an arbitrary phase for the mode l. This rela-
tion should also hold for the density distribution after
the gas’s free-expansion. If one considers that the im-
age index i encloses a time dependence (ti), the equa-
tions (3) and (4) have a very similar structure, associ-
ating Cp(kx, ky) and wp,i to ρl(r) and cos (ωlti), respec-
tively. Thus the PCA-based identification of uncorre-
lated components in the time-evolution of the density
profiles should enable to identify the elementary modes
of the system. The corresponding PCs’ weights are then

expected to oscillate in time at the frequency ωl of the
modes. In particular, the PCA should separate the
modes oscillating at different frequencies and differenti-
ate them from other sources of fluctuations or of dynam-
ics (e.g. dissipation). Following Ref. [29], we note that
modes can be properly distinguished if the period asso-
ciated to their beating is smaller than the total time for
which the time-evolution is recorded, or, even for shorter
probe time, if they have different enough amplitudes of
oscillations (i.e. excitation probability).

From our dataset with repeated realizations of
each hold time th, we thus consider, for each
PC p, the mean weights at time th, Wp(th) =∑
i/ti=th

wp,i/
∑
i/ti=th

1. We then fit Wp(th) to a sine

function A0 +As cos (ωth + φ) and extract the PC’s fre-
quency (ω) and amplitude As of oscillation. We then
consider as relevant the PCs that show oscillation of am-
plitude As > 8 × 10−4, frequency ν > 20 Hz, and where
the oscillation frequency can be extracted with a preci-
sion < 10%. Examples of the time evolution of Wp and
of their fits are shown in Fig. 3 (b).

We note that the PCA does not always assemble in a
unique PC all the correlations in the pixel values that
follow the same time dependence, and a single mode
can be artificially split into several components in the
analysis process. To better understand this behavior, we
performed tests on theoretical calculations and compare
them to the experiments. Theoretically, we specifically
populate a single Bogoliubov mode on top of the ground-
state, we then compute the interference patterns as a
function of the hold time th, similar to what is done in
Fig. 3 (e-f), and finally we apply the PCA. For each mode
considered, both for regular (BEC) or density-modulated
ground-states, several leading PCs are found to oscil-
late. Their frequencies match the mode frequency while
their oscillation amplitude decreases with the PC’s index.
Typically the ratio in the oscillation amplitudes between
the first and the second PC is about 10, and the ampli-
tude of the larger-index PCs are negligible. Therefore, in
the cases where the modes are the most strongly excited,
i.e. mainly in the BEC regime (see Rl scaling in Fig. 4
for the excitation amplitude), one can indeed expect that
several PCs are sensitive to a single mode in experiment,
matching our observation.

From those theory tests, we can also better understand
the origin of this artificial splitting of one mode in sev-
eral PCs. Indeed, the oscillations of the different PCs are
found to have the same frequencies but different phases,
typically shifted by about π/2. As it treats the pixels in-
dependently, the PCA gets confused by such π/2 phase
shifts in the oscillations occurring in different regions of
space, i.e. pixels’ values that distinctly oscillate, starting
from their extremal or medial values. The PCA then ar-
tificially splits the oscillations occurring in these different
regions into several components while they correspond to
the same mode. Finally, this effect can be further favored
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in typically imperfect experimental settings, by the ad-
dition of experimental noise as well as other technical
(e.g. imaging artifacts) or physical (e.g. dissipation) ef-
fects, which yield differences in the pixel values. Our
theory tests, however, show that those additions are not
the main reasons for the observed splitting.

Based on the conclusions of those tests, in the exper-
iment (see discussion of Fig. 4 of the main text), we in-
terpret as probing distinct modes only the PCs showing
different frequencies, while PCs whose frequencies match
within their error bars are interpreted as probing a single
elementary excitation of the system.

Partial recomposition

To isolate the effect of each PC on the complex time-
evolution of the interference patterns, we use partial re-
composition of the images inspired from Eq. (3). In par-
ticular we define

n(p)(kx, ky, t) = n̄(kx, ky) +Wp(t)Cp(kx, ky). (5)

This is equivalent to consider that a single PC is ”ex-
cited”, similarly to what can be done in theory for the in-
dividual excited modes of the BdG spectrum (see Fig. 2)
and its description in the main text and Supp. Mat.).
In Fig. 3 (c-d), we show examples of the axial cuts of
n(p)(kx, ky, t) for two of the leading PCs. We note that
here, as well as for all experimental data shown in this
manuscript, the axial cuts correspond to the average of
the density distributions for |kx| < 1.6µm−1.
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The notion of phase coherence lies at the foundation of quan-
tum physics. It is considered a key property in understanding 
many-body quantum phenomena, ranging from superfluidity 

and the Josephson effect to the more applied examples of matterwave 
interference, atom lasing processes and quantum transport in meso- 
and macroscopic systems1,2. Although phase-coherent states are 
well studied at equilibrium, understanding their out-of-equilibrium 
dynamics remains an open problem at the forefront of statistical and 
quantum physics, especially when interactions are present3.

Rephasing dynamics of an initially incoherent many-body quan-
tum system requires, first, the system to be conducting such that 
different parts can exchange energy and particles, and second, an 
efficient mechanism to dissipate the phase excitations. As for the 
first requirement, a famous example illustrating the inhibition of 
thermalization is many-body localization4. The second ingredient—
dissipation—is more subtle and multifaceted, relating, for instance, 
to the growth of thermal correlations in isolated systems5, com-
plex interaction-mediated dynamics6,7 or the exponential growth 
of unstable modes and topological defects in connection with the 
Kibble–Zurek mechanism8–10.

The interplay among coherence, self-localization and relaxation 
dynamics is an intriguing problem. In this respect, the recently dis-
covered11–13 supersolid states in dipolar quantum gases can poten-
tially provide a new twist in studying non-equilibrium quantum 
phenomena, about which very little is known so far. A supersolid 
combines phase coherence and periodic localization in space, prop-
erties corresponding to the spontaneous and simultaneous breaking 
of both gauge and translational symmetry. Intuitively, a supersolid 
can be viewed as a fully coherent state, which self-establishes com-
pressible density modulation. In this Article, we explore the evo-
lution of a supersolid of ultracold dysprosium (Dy) atoms when 
brought out of equilibrium after an interaction quench that destroys 
its global phase coherence. Due to the dynamic formation of the 
supersolid, an interesting question is whether its phase dynamics 
are similar to or different from comparable rigid structures, such as 

a Bose–Einstein condensate (BEC) spliced in an optical lattice14–16, 
or if new phenomena can manifest.

In a dipolar supersolid, the particle self-arrangement in space is 
largely dictated by the many-body interactions17–22 and can be mod-
ified by either tuning the interatomic potentials or changing the 
atom number (N) in the system. Figure 1a shows the phase diagram 
of a cigar-shaped quantum gas of bosonic Dy atoms with trans-
verse dipole orientation. It is constructed from the ground-state 
wavefunctions obtained by numerically solving the extended 
Gross–Pitaevskii equation (eGPE)11,13,21 (Methods). Three distinct 
quantum phases can be accessed by changing N or the s-wave scat-
tering length as, which parametrizes the contact interaction. For a 
given N and large enough as, the ground state of the system is a 
non-modulated dipolar BEC (grey region). By lowering as, the influ-
ence of the dipolar interaction increases. When reaching a critical 
value of as, the system undergoes a phase transition to a supersolid 
phase (SSP). Here density modulation at a wavelength close to the 
roton excitation23,24 appears in the ground-state density profile (red 
region). By further lowering as, the system evolves into an array of 
insulating droplets (IDs) with an exponentially vanishing density 
link between them (blue region).

Our eGPE calculations, following a standard non-stochastic 
approach, are inherently phase coherent and thus cannot capture 
uncorrelated local phases. However, recent experiments have shown 
a connection between the strength of the density modulation and 
the coherence properties of the system, revealing a clear difference 
between the SSP and ID phase11–13,25. In the SSP, the whole system 
shares a global phase. In contrast, in the ID case, any fluctuation or 
excitation can lead to a locally different evolution of the phase. The 
absence of particle tunnelling between the droplets leads to dephas-
ing of the system.

By performing interaction quenches and moving across the 
phase diagram, one can create random phase excitations (‘phase 
scrambling’) and thus distinguish between the different coherence 
characters of the ID and SSP, as shown in Fig. 1b. Our experimental 
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A supersolid is a counterintuitive phase of matter that combines the global phase coherence of a superfluid with a crystal-like 
self-modulation in space. Recently, such states have been experimentally realized using dipolar quantum gases. Here we inves-
tigate the response of a dipolar supersolid to an interaction quench that shatters the global phase coherence. We identify a 
parameter regime in which this out-of-equilibrium state rephases, indicating superfluid flow across the sample as well as an 
efficient dissipation mechanism. We find a crossover to a regime where the tendency to rephase gradually decreases until the 
system relaxes into an incoherent droplet array. Although a dipolar supersolid is, by its nature, ‘soft’, we capture the essential 
behaviour of the de- and rephasing process within a rigid Josephson junction array model. Yet, both experiment and simulation 
indicate that the interaction quench causes substantial collective mode excitations that connect to phonons in solids and affect 
the phase dynamics.
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protocol starts by preparing a supersolid state by evaporative cooling 
from a thermal sample (Fig. 1b, left) (ref. 13). We then decrease as to 
enter into the ID regime (Fig. 1b, middle). Here the system ground 
state is an array of IDs, each with a phase that is expected to evolve 
independently in time. After these phases have become fully uncor-
related, we jump as back to its initial value (Fig. 1b, right). We then 
study the time evolution of the out-of-equilibrium system. We mea-
sure phase coherence and density modulation, whose coexistence is a 
hallmark of supersolidity, using a matterwave interference technique 
(Methods and refs. 11,13,26–29). In brief, for each experimental real-
ization i, we take an absorption image after a time-of-flight (TOF) 
expansion. The recorded image exhibits an interference pattern if 
in-trap density modulation is present. Via Fourier transform, we 
extract the phasor Pi ¼ ρi e

�iΦi

I
 with amplitude ρi and phase Φi at 

the spatial frequency of the interference pattern (cf. Extended Data  
Fig. 1a). Averaging over an ensemble of q realizations, the mean of 
the phasor amplitudes, AM = 〈∣Pi∣〉, characterizes the degree of density 
modulation, whereas the amplitude of the complex mean, AΦ = ∣〈Pi〉∣, 
contains information about the global phase coherence. As an addi-
tional measure of coherence, we calculate the circular variance of the 

phase ΔΦ = 1� 1
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
i¼1 cos Φið Þ

� 2 þ Pq
i¼1 sin Φið Þ

� 2q

I

 (ref. 30). 

For a perfect supersolid (resp. ID) state and in the limit q → ∞, 
one expects AΦ = AM > 0 (respectively AΦ = 0, AM > 0) and ΔΦ = 0 
(respectively ΔΦ = 1). In the following, we describe and character-
ize each step of our phase-scramble-and-rephase protocol (Fig. 1b).

We initially prepare the supersolid state (Fig. 1b, left) of 164Dy 
atoms13 (N = 1.4 × 104) in an axially elongated optical dipole trap 
(ODT) with the final harmonic frequencies ωx,y,z = 2π × (225, 37, 
165) s−1. From our interferometric analysis, we see that this ini-
tial state is long lived and has a high degree of phase coherence  

(Fig. 1c–f). The characteristic quantities of AΦ and AM (Fig. 1c) and 
ΔΦ (Fig. 1d) are constant over hold times th up to 100 ms. The small 
mean value 〈ΔΦ〉 = 0.142(8) (the value in parentheses gives the 
standard error of the last digit) over the entire range of th reveals 
a constantly narrow spread in the phase distribution, as shown for 
th = 100 ms in the polar plot (Fig. 1e) of the phasors Pi and the cor-
responding histogram (Fig. 1f) for Φi.

In the next step of our protocol (Fig. 1b, middle), namely, the 
phase-scrambling excitation, we tune as via magnetic Feshbach 
resonances by varying the external magnetic field B (Methods and 
Extended Data Fig. 2). From the initial supersolid state (~87.9a0, 
where a0 denotes the Bohr radius), we transfer the system into the 
ID regime (~76.9a0) using a 20 ms linear B-field ramp. Here the 
atoms are expected to spatially arrange in an array of almost isolated 
droplets with exponentially small particle tunnelling between them. 
We then let the system evolve for a variable scrambling time tS.

Figure 2 shows the evolution of ΔΦ, AΦ and AM with tS. After 
completion of the B-field ramp, ΔΦ initially keeps rapidly increas-
ing for 20 ms and then slowly saturates to a large ΔΦ value. Here 
the droplets develop uncorrelated phases, as illustrated by the polar 
plot of Pi at tS = 100 ms (Fig. 2a, inset). We extract a saturation value 
of 〈ΔΦ〉sat = 0.92(1) (simple mean for tS > 50 ms). We highlight that 
ΔΦ is not expected to reach unity because of the finite sample 
size in the experiment (q ∈ [90, 100] repetitions; slight variations 
are due to a post-selection by atom number). It is evident that the 
measured 〈ΔΦ〉sat agrees with the expectation for a sample with 
the same q and uniformly random phases (grey shading in Fig. 2a, 
Extended Data Fig. 1b and Methods). As ΔΦ increases and the 
global phase coherence is lost, AΦ decreases quickly towards zero 
(Fig. 2b), whereas the density modulation persists as evidenced by 
AM remaining large.
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The interaction quench into the ID phase is a robust method to 
create phase-scrambling excitations. It is natural to ask how the rela-
tive phases between the individual droplets evolve once the density 
links between them are restored and whether the system relaxes into 
an equilibrium supersolid state. To address this question, we per-
form the last stage of our protocol (Fig. 1b, right). After a scrambling 
time of tS = 20 ms, we couple the droplets back together by jumping 
the B field and thus quenching as to 87.9a0, where the system ground 
state is a supersolid. However, after the quench, our state is out of 
equilibrium in terms of both phase and density distribution: since 
the density-modulated states in dipolar gases are self-assembled, 
they can deform after a sudden change in the many-body interac-
tions31–33. As shown in Fig. 3a, we first observe a rapid reduction 
in ΔΦ and then slower dynamics towards an equilibrium value 
with ΔΦ reaching 〈ΔΦ〉sat = 0.13(2) (simple mean for th > 50 ms). 
Simultaneously, AΦ approaches AM on the same timescale, whereas 
AM remains nearly constant. These observations show that the sys-
tem efficiently rephases by dissipating the phase excitation.

Our system of multiple superfluid droplets with individual 
phases, interconnected via weak links, is reminiscent of a Josephson 
junction array (JJA)34. Motivated by this analogy, we investigate 
whether a simple JJA model can adequately describe the observed 
phase dynamics. This is a non-trivial question, since in contrast to 
a rigid JJA, our droplet array is ‘soft’ in the sense that the droplet 
shapes and their distances change with as. We construct our model 
from a one-dimensional (1D) array of four coupled grains. For each 
grain, the number of particles is Nj and phase is θj. The Hamiltonian 
of this system is

H ¼
X4

j¼1

Nj � Nj

� 2

2Cj
�
X3

j¼1
Jj cos θjþ1 � θj

� 
; ð1Þ

where the overline denotes an ensemble average. The first term is the 
‘charging’ energy of the droplet (corresponding to its mean inter-
action energy) with the capacitance Cj. The second term describes 
the tunnelling of particles between the droplets with the Josephson 
amplitude Jj. The JJA model is appropriate if the droplets are reason-
ably well separated in space. For simplicity, we assume that Cj and 
Jj are identical for all the droplets and later denote them as C and J. 
Note that this Hamiltonian describes a quantum evolution since Nj 
and θj are connected via canonical commutation relations.

We describe the time evolution of the system via a Langevin for-
malism35,36. The phase of the droplet j follows

η
dθj
dt

¼ J½sinðθjþ1 � θjÞ � sinðθj � θj�1Þ þ ξjðT; η; tÞ; ð2Þ

where the friction parameter η is a phenomenological way to account 
for dissipative mechanisms. The temperature T is introduced via the 
thermal noise ξj(t), which shows Gaussian uncorrelated fluctuations 
at times t and t' given by ξjðtÞξiðt0Þ ¼ 2ηkBTδij δðt � t0Þ

I
, where δij 

is the Kronecker delta and δ(.) denotes the Dirac distribution. The 
thermal energy scale kBT (for T = 150 nK in the experiment and the 
Boltzmann constant kB) is much higher than the estimated capaci-
tance effect, allowing to neglect the second-order time derivative 
term related to C in the evolution of equation (2) (Methods).

This JJA model provides an intuitive understanding of the 
dephasing and rephasing dynamics shown in Figs. 2 and 3, respec-
tively. It encapsulates the essential physics of a rigid droplet situa-
tion at a finite temperature T in terms of the two phenomenological 
parameters J and η. The timescale of de- and rephasing is dictated by 
the dissipation η. The dissipation mechanisms include atom losses 
(cf. Extended Data Fig. 3), energy and particle exchange with the 
thermal component of the gas or with some internal degrees of free-
dom of the droplets, as discussed later. In contrast, the phase fluctu-
ations in the equilibrium state, namely, the stationary value of ΔΦ, 
are set by the competition between J and T and are independent of η.

We develop a parameter-free theory–experiment comparison 
for the rephasing dynamics by first fixing the value of J and η from 
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independent measurements. Taking advantage of the fact that η and 
J play different roles at different stages of the protocol, we fix J by 
reproducing the ΔΦ measured at the end of evaporation (Fig. 1d). 
The parameter η is instead extracted from the dephasing dynamics 
of ΔΦ during tS (Fig. 2 and Methods). We find that J = 6,000 Hz and 
η = 60 ± 10.

With all the values of the parameters fixed, we now compare the 
rephasing dynamics from the JJA theory and the experiment. As 
shown in Fig. 3, we observe that despite its simplicity, the model 
qualitatively predicts the rephasing curve well. In particular, the pla-
teau value at large th as well as the time to reach the plateau are con-
sistent with the experiment. In addition, we note that in the early 
time evolution (th < 30 ms), the experimental data is systematically 
slightly above the JJA curve, namely, the system seems to rephase 
slower than predicted by the model. This indicates that other phe-
nomena beyond our rigid JJA model are important to fully capture 
the out-of-equilibrium physics.

To elucidate why the observed experimental rephasing is 
slower than expected from the JJA model, we simulate the system’s 
real-time evolution (RTE)24 in the simplified zero-temperature and 
zero-atom-loss case, with a quench sequence mimicking the experi-
ment. Different from the phenomenological JJA model, the ab initio 
RTE approach can additionally account for the ‘soft’ nature of the 
supersolid, namely, the crystal and phase phonons31–33. As shown in 
Fig. 4a, the RTE simulation shows that the collective modes are ini-
tially excited by the interaction quench. The positions and heights 
of the high-density peaks evolve in time, especially during the initial 
tens of milliseconds, resulting in time-dependent density links. At 
longer times, we observe a damping of the collective motion, which 
can be attributed to an initial redistribution of the population from 
a few modes to many higher-lying modes over time. This suggests 
a possible dissipation mechanism of the phase excitations for our 
experiment. Even though the finite temperature, atom loss and pres-
ence of a normal component affect the precise dynamics and damp-
ing in the experiment, the RTE calculation strongly indicates that 
the droplet dynamics play an important role at early times. This is 
compatible with the observed deviations from the rigid JJA model.

In the experiments, we do not have direct access to the in-trap 
density evolution. However, by repeating our experiment in a tighter 
trap, which gives more distinct side peaks in the TOF interference 
patterns, we observe the indications of collective mode excitations. 
In Fig. 4b, we plot the time evolution of ΔΦ following the rephasing 
protocol. Here, on top of a global decrease in ΔΦ, a low-amplitude 
oscillating behaviour is evident, as highlighted by plotting the resid-
uals of an exponential fit to the data. We extract an oscillation fre-
quency of 50(5) Hz (cf. Extended Data Fig. 4 and Methods).

By comparing the predictions of the JJA and RTE approach to our 
experimental data, we conclude that the phase dynamics is largely 
described by a dissipative and ‘rigid’ JJA picture. We speculate that 
the phase excitations primarily dissipate via coupling to excited 
modes37. Moreover, the droplet dynamics seems to play an impor-
tant role, affecting the rephasing efficiency. Note that one could 
modify the JJA model to take the droplet dynamics into account, at 
least to a certain degree (Methods). Such coupling between the two 
types of degree of freedom usually leads to additional dissipation 
channels38. Besides being of intrinsic theoretical interest, this could, 
for example, open the perspective to using supersolids to study 
similar dynamics in regular solids between electronic and phononic 
degrees of freedom. This, however, goes beyond the scope of the 
present work and will be addressed in future studies.

In a final set of experiments, we investigate the role of the 
density-link strength between the droplets, namely, the Josephson 
coupling, in the rephasing dynamics. After phase scrambling  
(Fig. 1b, middle), we quench as to different values and record ΔΦ 
as a function of the hold time th (Extended Data Fig. 5a). For each 
as, we quantify the strength of the density link via L

I
, which was 

determined from a ground-state calculation (Fig. 1a). We study 
the short- and long-time evolution of ΔΦ by the determination 
of the initial rephasing rate ∣R∣ (the slope of a linear fit to ΔΦ for 
th ≤ 20 ms) and the saturation value 〈ΔΦ〉sat (simple mean of ΔΦ for 
th > 50 ms), respectively, as shown in Fig. 5a,b (for AM and AΦ see 
Extended Data Fig. 5b).

We observe different rephasing dynamics depending on L
I

. For 
extremely weak density links (L

I
 < 10–3), which we associate with 

the ID regime, the system is unable to rephase and it remains inco-
herent over the whole time evolution as indicated by a low ∣R∣ and 
large 〈ΔΦ〉sat ≈ 0.9. As L

I
 slightly increases, the system shows a 

partial rephasing with 〈ΔΦ〉sat decreasing to about 0.5. By further 
increasing the density-link strength, there exists a critical value of 
L
I

 above which the system recovers its full phase coherence after 
a long time (〈ΔΦ〉sat = 0.15). In this regime, ∣R∣ ≈ 30 s−1 is large and 
seems relatively independent of L

I
.

To compare the JJA predictions with our experimental obser-
vations, we first extract J for each as. For this purpose, we look at 
the long-time behaviour after scrambling and rephasing when the 
system has equilibrated, matching the theoretical and experimen-
tal 〈ΔΦ〉sat values. This is justified by the long-time agreement 
observed in Fig. 3. As expected from the increasing density-link 
strength L

I
 between the droplets, J globally grows with as (Fig. 5a, 

inset). Using these J values and the single calibrated value of η = 60 
(Fig. 2), we extract the rephasing rate ∣R∣JJA from the short-time 
evolution of ΔΦ within our JJA framework (Fig. 5b, inset). Despite 
the simplicity of the JJA approach, the ∣R∣JJA values are of the same 
order of magnitude as our experimental data and show the same 
qualitative behaviour with respect to as. As observed in Fig. 3, ∣R∣JJA 

–20 0 20 40 60 80 100

–10

–5

0

5

y 
(µ

m
)

00.10.20.30.4

0

0.5

1.0

0 20 40 60 80 100

th (ms)

–0.2

0

0.2

R
es

id
ua

ls

a

b

SSP ts th (rephase)

∆
Ф

Fig. 4 | Out-of-equilibrium dynamics. a, rTE simulation starting from 
a zero-temperature cloud of 2 × 104 atoms of 164Dy and performing a 
scramble-and-rephase sequence. We plot the 1D integrated density profile 
(colour code) along the weak trap axis as a function of time. Starting from 
the SSP, the scattering length is linearly ramped at 1 ms to the ID phase 
(first dashed line), held there for tS = 20 ms (second dashed line), ramped 
back to the SSP in 1 ms (third dashed line) and then simply held for th. The 
trap frequencies are ωx,y,z = 2π × (229, 37, 135) s−1. b, Experimental rephasing 
data for the same trap. The upper panel shows ΔΦ calculated analogously 
to that shown in Fig. 3 (black dots), as well as an exponential fit (grey line). 
The lower panel shows the residuals of the fit before (black line) and after 
(red line) the application of a numerical low-pass filter.

NATure PhySICS | VOL 17 | MArch 2021 | 356–361 | www.nature.com/naturephysics 359



Articles NAtuRE PHYsics

generally predicts rephasing faster than that measured in the experi-
ment, suggesting the presence of non-negligible processes beyond 
the rigid JJA model.

It is interesting that despite the JJA being able to consistently 
model the phase dynamics in the experiment, the extracted depen-
dence of J on as is mild in comparison to the expected ground-state 
density link L

I
 (Fig. 5a). For instance, J changes only by a factor of 

two whereas L
I

 changes by two orders of magnitude. Further, J seems 
to effectively saturate for increasing strength of the ground-state 
density link L

I
, which is in agreement with the observed plateaus 

of both 〈ΔΦ〉sat and ∣R∣ for large as. Possible explanations include 
the breakdown of the JJA model for a low-contrast supersolid, the 
impact of finite temperature on both the equilibrium supersolid 
state itself and the experimental measurement, or the role of col-
lective dynamics.

In conclusion, we have performed a study of the out-of-equilibrium 
dynamics of a dipolar supersolid after an interaction-driven phase 
excitation that fully destroys its phase coherence. We have dem-
onstrated that if the inter-droplet density links are sufficient, this 
phase-scrambled system relaxes into an equilibrium phase-coherent 
state. With decreasing link strength, the rephasing substantially 
slows down and eventually ceases in the ID regime. We find an over-
all consistency between the phase dynamics observed in the experi-
ment and an intuitive, theoretically easily tractable rigid JJA model. 
However, both ab initio simulations and experimental observations 
indicate post-quench collective excitations of the droplet array, 
which can affect the phase dynamics. Our study shows the evidence 
of particle flow across a dipolar supersolid, connecting to its super-
fluidity. It also suggests the efficient dissipation of phase excitations, 

whose microscopic mechanism is still under question. Future exper-
imental works, combined with advanced out-of-equilibrium theo-
retical models, will be crucial to understand the relaxation dynamics 
at play in isolated and open supersolid states of quantum matter.
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Methods
Ground-state phase diagram and contrast. Our numerical calculations of the 
ground-state phase diagram of a cigar-shaped 164Dy dipolar quantum gas follow 
the procedure described in our earlier works13,24. In brief, the calculations are 
based on minimizing the energy functional of the eGPE using the conjugate 
gradient technique40. The eGPE includes the anisotropic trapping potential, the 
short-range contact and long-range dipolar interactions at the mean-field level and 
the first-order beyond-mean-field correction in the form of a Lee–Huang–Yang 
term41–43. From the derived three-dimensional wavefunction ψ(r) at positions r, 
we calculate the 1D in situ density profile as n(y) = ∫∣ψ(r)∣2dxdz. We evaluate the 
in situ density contrast as C = (nmax − nmin)/(nmax + nmin) for profiles that feature 
density modulations by searching the central extrema of n(y) and determining 
the maximum (nmax) and minimum (nmin) values. For profiles without density 
modulation (ordinary BEC), we set C = 0. We use the quantity L ¼ 1� C

I
 to 

estimate the density link between the droplets, which is related to the tunnelling 
strength13.

RTE. We perform the RTE based on the eGPE and mimicking the experimental 
parameters and sequence. In particular, in Fig. 4a, we use the parameters of the 
experimental data shown in Fig. 4b, using a gas of 164Dy atoms (N = 2 × 104) in a 
trap of frequencies ωx,y,z = 2π × (229, 37, 135) s−1. We start from the eGPE ground 
state ψ(r) at as = 92a0 and calculate the time evolution of the wavefunction 
ψ(r,t) according to the eGPE using a split-operator technique24. For the 
scramble-and-rephase protocol, the scattering length is linearly ramped from the 
SSP (as = 92a0) to the ID regime (as = 80a0) in 1 ms, kept constant for tS = 20 ms, 
ramped back to as = 92a0 in 1 ms and finally held constant for a variable th. We 
compute the 1D integrated density profile nðy; tÞ ¼

R
ψðr; tÞj j2dxdz;

I
, and its time 

evolution is shown in Fig. 4a. Similar to the work in refs. 12,25, we gain further 
insights into the rephasing process by extracting the global spatial variation α of 
the phase of the wavefunction along y defined as

αðtÞ ¼
R
Ynð0; y; 0; tÞjθð0; y; 0; tÞ � hθð0; y; 0; tÞijdyR

Ynð0; y; 0; tÞdy
; ð3Þ

where ψðr; tÞ ¼ jψðr; tÞj exp i θðr; tÞð Þ
I

 and r = (x, y, z). Here the average 
hf ðyÞi ¼

R
Y f ðyÞdy

I
 for any function f and Y* denotes the inner region  

Y* = [−5, 5] μm.
Extended Data Fig. 4a shows the evolution of α with th, namely, after ramping 

as back to the SSP. Here, α first quickly decreases, transiently reaching a value 
close to zero (green filled dot), before increasing again up to an intermediate 
value (blue filled dot) and finally smoothly decreasing towards zero, setting to a 
low saturation value (α* = 0.027 × 2π). After long times, only small variations of α 
persist (orange filled dot), indicating that an equilibrium distribution is reached. 
The density and phase profiles corresponding to the coloured filled dots are shown 
in the inset of Extended Data Fig. 4a. Although α first reaches a low value within 
a short time, we observe that the corresponding density profile is strongly out of 
equilibrium (green curve), differing from both the initial ground state (not shown) 
and the long-time equilibrium state (orange curve). The phase variations are only 
transiently suppressed here. In contrast, when α reaches the next local maximum, 
the density profile appears very close to the equilibrium expectation, yet with a 
remaining phase pattern of large amplitude (blue curves). This opposite behaviour 
of the phase and density in the early time is reminiscent of the quadrature 
oscillations of phase and density perturbations associated with a given elementary 
excitation in the linear regime31. The initial oscillatory behaviour of the RTE is 
also reminiscent of the behaviour of ΔΦ from repeated instances of experimental 
interference patterns observed in Fig. 4b. Here we subject α to a similar analysis as 
ΔΦ, performing an exponential fit and calculating the residuals (Extended Data 
Fig. 4b). The extracted decay time is 6.3(2) ms; from the residuals, we find the main 
frequency components in the interval of [50, 100] Hz. We note that this frequency 
is similar to the low-lying mode of the SSP excitation spectrum, as computed from 
Bogoliubov theory31. The observed frequency of oscillation and the time evolution 
of phase and density profiles in apparent quadrature suggest an important role of 
the low-lying collective mode of the SSP in the rephasing dynamics.

Experimental sequence. We apply our phase-scrambling protocol to the 
evaporatively cooled SSP of 164Dy atoms13. For this, we initially load our 
five-beam open-top magneto-optical trap for 3 s and apply a magneto-optical 
trap compression phase, which lasts for 400 ms (ref. 44). We then load about 
8 × 106 atoms into a single-beam horizontal ODT, propagating along the y axis. 
The horizontal ODT is derived from a 1,064 nm focused laser beam. After 
loading, we apply forced evaporative cooling by exponentially reducing the optical 
power in the horizontal ODT for 0.9 s. Subsequently, we switch on a second ODT 
beam along the vertical z axis to form a crossed ODT and continue with the last 
stage of evaporative cooling for 2 s (ref. 45) until the SSP is reached. During the 
evaporation sequence, a vertical magnetic field of B = 2.430(4) G sets the dipole 
orientation. The final trap geometry is axially elongated with harmonic frequencies 
ωx,y,z = 2π × (225, 37, 165) s−1. After the initial-state preparation (SSP), we apply our 
phase-scrambling protocol. For that, without any additional waiting time after the 
evaporative cooling, we change the B field to 1.65 G deep in the ID regime. Here 

we allow the system’s global phase to freely evolve for tS = 20 ms. We have explored 
two types of protocol: jumping, which results in an effective ~1 ms change in the B 
field due to the finite time response of the system, and ramping within 20 ms. We 
observe a similar scrambling behaviour in ΔΦ for both jump and ramp protocols. 
We complete our phase-scrambling sequence by jumping the B field back to its 
initial value and by letting the system evolve for a variable hold time th. Finally, we 
perform a matter–wave-interference-type experiment during TOF expansion and 
record the resulting interference pattern by absorption imaging. A TOF duration of 
26.5 ms ensures sufficient mapping onto the momentum space. The imaging beam 
propagates in the horizontal x–y plane at an angle of ~45° with respect to the weak 
trap axis y.

Tuning the scattering length. To connect the experimental B-field values to 
the contact scattering length as, we use the established formula for overlapping 
Feshbach resonances: as Bð Þ ¼ abg

Q
i 1� ΔBi= B� B0;i

� � 

I
 (ref. 46), where B0,i 

denotes the poles; ΔBi, the corresponding distance from the pole to the zero 
crossing; and abg, the (local) background scattering length. We determine the poles 
and zero crossings in our B-field region of interest by performing loss spectroscopy 
and thermalization measurements. Starting from a thermal cloud prepared at 
2.55 G, we first ramp the magnetic field to the final value within 5 ms and then 
lower the trap depth to its final value within 50 ms; we wait an additional hold time 
of about 400 ms. In the absence of Feshbach resonances, we typically end up with a 
thermal gas of 5 × 105 atoms at about 500 nK. When scanning the magnetic field in 
our region of interest, we observe several atom loss features together with peaks in 
the atom cloud temperature, which we fit by Gaussians to extract the positions of 
the poles B0,i and widths ΔBi.

The value of the background scattering length of 164Dy is a more subtle topic, 
as several measurements have reported different values in the range between 
60a0 and 100a0 (ref. 47). These measurements were performed using different 
methods (for example, cross-thermalization and theory–experiment comparisons 
of oscillation frequencies), for different initial states (thermal gases and quantum 
droplets) and at different magnetic fields. In particular, the existence of very broad 
resonances at higher magnetic fields48 affects the measured local background 
scattering lengths. Therefore, we set the value of abg in such a way that the B-to-as 
conversion reproduces the calculated critical scattering length of as = 91a0 at the 
experimentally estimated phase transition point between the BEC and SSP around 
2.5 G. This gives a value of abg = 73a0, which lies within the error bars of the latest 
published value of abg = 69(4)a0 (ref. 47). Extended Data Fig. 2 shows the resulting 
calculated B-to-as conversion from which we estimate as,SSP = 88a0 at 2.43 G in the 
SSP and as,ID = 76.9a0 at 1.65 G in the ID phase, as used in the experiment.

Interference pattern analysis. Our analysis is similar to the one described in 
ref. 13. We record q ∈ [30, 100] experimental repetitions for each parameter set 
P. Each recorded TOF picture i (i = 1,…,q) is processed by first subtracting the 
thermal background via a symmetric 2D Gaussian fit to the wings of the density 
distribution. Next we recentre the image of the degenerate cloud and integrate 
its central region, where the matter–wave interference signal is concentrated, 
along the z direction within ±2 μm−1. We obtain a momentum density profile 
that we normalize by its sum. From such a momentum profile, a fast Fourier 
transform yields the 1D density profile ni ~yð Þ

I
. An in situ density modulation in 

an atomic cloud leads to side peaks in ni ~yð Þ
I

, symmetrically centred around the 
peak at zero. To isolate the centre of this specific modulation, we calculate the 
incoherent and coherent means of ni ~yð Þ

I
, which are denoted as nM ~yð Þ ¼ hjni ~yð ÞjiP

I
 

and nΦ ~yð Þ ¼ jhni ~yð ÞiPj
I

, respectively. The incoherent mean (nM) reflects the 
mean modulation amplitude of the cloud at the respective wavelength ~y. The 
coherent mean (nΦ ≲ nM) if the phases of the interference pattern among the 
q repetitions at the respective ~y are roughly constant, and nΦ → 0 (and hence 
nΦ ≪ nM) if the phases are random. Therefore, the most pronounced difference 
nM − nΦ is observed for the ID regime (Extended Data Fig. 1a). From the maximum 
of this difference, the modulation wavelength (or ‘droplet distance’) can be 
determined as ~y � d

I
. The fast Fourier transform phasors at d can be expressed 

as Pi ¼ ni dð Þ ¼ ρie
�iΦi

I
, yielding the sets fP1; ¼ ; PqgP

I
. To characterize the 

distribution of phases Φi within our sets, we calculate the circular variance 
ΔΦ = 1� 1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
i¼1 cos Φið Þ

� 2 þ Pq
i¼1 sin Φið Þ

� 2q

I

 (ref. 30). For a phase-coherent 
sample, and hence interference fringes stable within the envelope, ΔΦ is small, 
whereas for an incoherent sample, it approaches unity. To estimate the confidence 
intervals of ΔΦ, we apply a bias-corrected and accelerated (BCA) bootstrapping 
scheme39 for each P, resampling 106 times from the respective q experimental 
values. We note that possible non-ballistic (namely, interaction-driven) evolution 
during the early TOF might have a residual systematic effect on the measured 
values of nM, nΦ and ΔΦ.

Effect of finite sample size. Even the circular variance ΔΦ of a sample of q angles 
(Φ1,…,Φq) drawn from a completely random distribution approaches unity only 
when q → ∞. To estimate the fully incoherent limit of ΔΦ for our finite q, we 
calculate 106 values for ΔqΦ, each for q independent draws from a theoretical, 
uniform distribution in [0, 2π). The histograms of ΔqΦ are shown in Extended 
Data Fig. 1b. The indicated 1σ confidence intervals are [0.77, 0.93] for q = 35 draws 
and [0.86, 0.96] for q = 100 draws. We note that the histograms of ΔqΦ seem 
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to closely follow a beta distribution49, even if one generalizes the underlying 
distribution of phases Φi to a von Mises distribution, of which the uniform 
distribution is just a degenerate case.

Interference pattern quantities for a simple model of a droplet array. For 
simplicity, let us consider here that the state is made of ND identical droplets. In this 
case, the full wavefunction of the system would be

ψ x; y; zð Þ ¼
XND

j¼1
f x; y � Rj; z
� 

eiθj ; ð4Þ

where Rj is the spatial coordinate of the jth droplet, θj is its phase (taken to be 
uniform over the droplet) and f is the wavefunction of a single droplet localized 
around y = 0. With such a wavefunction, the phasor extracted from one realization 
would be

Pi ¼
Z

dky
XND

j1 ;j2¼1
eiky Rj1�Rj2�dð Þei θj1�θj2ð Þj~f ky

� 
j2; ð5Þ

where ~f  is the Fourier transform of the function f and d is the distance between the 
neighbouring droplets d = 〈Rj+1 − Rj〉. It simplifies to

Pi ¼
XND

j1 ;j2¼1
g Rj1 � Rj2 � d
� 

ei θj1�θj2ð Þ ð6Þ

 g 0ð Þ
XND�1

j¼1
ei θjþ1�θjð Þ; ð7Þ

where g yð Þ
I

 is the Fourier transform of j~f ky
� �

j2
I

, which is thus a peak function with 
a width of the order of the droplet size.

Equation (7) yields

AM ¼ hjPijiP ¼ ðND � 1Þgð0ÞlΔθ  ðND � 1Þgð0Þ; ð8Þ

which shows only a weak dependence on the phase relation between the droplets 
and on the droplets’ shape. We note that the residual information on the droplets’ 
phase relation is contained in AM via the length of the mean phase-difference 
vector lΔθ = hjhexpðiΔθjÞijjiP

I

. In the fully coherent (resp. incoherent) case, lΔθ = 1 
(resp. lΔθ = 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ND � 1

p
I

 on average). The change in lΔθ with the degree of coherence 
remains limited, especially for the relatively small ND relevant for our experimental 
situation (Fig. 1). Here h:iP

I
 denotes the average over an ensemble of realizations P 

and 〈.〉j denotes the average over the droplet array.
On the contrary, the function AΦ ¼ jhPiiPj

I
 contains the average of the phases 

with

AΦ

AM
’ jhhei θjþ1�θjð ÞijiPj: ð9Þ

Therefore, the ratio AΦ/AM essentially measures the mean difference in the phases 
between two neighbouring droplets in the array.

From equation (7), it is also evident that the phase of the phasor is 
Φ  hθjþ1 � θjij
I

. The circular variance ΔΦ for q realizations can be expressed as

ΔΦ ¼ 1� 1
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

i1¼1
eiΦi1

Xq

i2¼1
e�iΦi2

q
: ð10Þ

For a totally phase-coherent state, Φ = 0 for all the realizations leading to ΔΦ = 0, 
while for a totally phase-incoherent sample, only the diagonal terms in equation 
(10) survive, leading to ΔΦ = 1� 1ffiffi

q
p

I

 for q independent measurements.

Langevin formalism for the JJA model. To model the self-modulated dipolar 
gas, we use the JJA whose Hamiltonian H is given in equation (1). To describe 
the dynamics, we use a Langevin formalism (example in ref. 36), where the time 
dependence of the phases obeys

η
dθj
dt

¼ � dH
dθj

þ ξjðT; η; tÞ; ð11Þ

where the two sites are indexed using i and j and the thermal noise is denoted as 
ξi(t), which is uncorrelated from grain to grain and at different times shows the 
correlations

ξjðtÞξiðt0Þ ¼ 2ηkBTδij δðt � t0Þ; ð12Þ

where kB is the Boltzmann constant. This thermal noise ensures that in equilibrium, 
the configurations are realized with a probability proportional to the Boltzmann 
weight e�H=ðkBTÞ

I
.

To determine the parameters of the JJA model, we use the procedure described 
in the main text. With J fixed by the equilibrium value of ΔΦ, we determine η by 
comparing to the dephasing timescale.

Discussion on the quantum part of the Hamiltonian. The JJA model contains 
both quantum evolution and thermal noise. In our case, one can make the 

additional simplification to neglect the term related to the capacitance leading to 
quantum fluctuations compared with thermal fluctuations.

To justify this approximation, we estimated the interaction energy cost with a 
wavefunction given by a variational principle50. We obtain an energy to add one 
particle to the droplet of the order of a few hertz, which is very small compared 
with the temperature of 150 nK.

This allows to drop the second-order time derivative of the phase in the 
Langevin equations, leading to equation (2). For a system of four droplets, we 
have four equations for the phases. For the equations describing the evolution of 
the droplets at the edge of the array (namely, j = 1 or j = 4), we drop the terms of 
equation (2) containing the phases of non-existent neighbours (namely, θ0 or θ5).

Numerical solution of the equations. To solve our system of equations, we 
discretize the time dependence with a time step adapted to the considered value of 
J. For J/h up to 6,000 Hz, we used a time step of 10−5 s. For larger J, we used a time 
step of 5 × 10−6 s.

To relate the phases of the four individual droplets to the observables, equation 
(7) and the phasor definition, we use

Φ ¼ argð
X3

j¼1
eiðθjþ1�θjÞÞ: ð13Þ

To obtain a ΔΦ value that can be compared to the experimental one, we compute 
the evolution over q = 100 independent realizations, determine Φ for each 
realization and compute the evolution of ΔΦ from these 100 values.

For the scrambling, we initialize each of the 100 runs with random phases 
and let the system evolve for 80 ms with a finite J to reach the corresponding 
equilibrium state. We then ramp J down to 0.002 Hz in 20 ms and let the system 
evolve for 100 ms.

For the rephasing, we initialize 100 configurations with random phases, which 
corresponds to the equilibrium state for the system with a small J (0.002 Hz). We 
then let the system evolve with J = 6,000 Hz.

Modified JJA model with droplet dynamics. One can phenomenologically 
modify the JJA model to take the droplet dynamics into account. Each droplet is 
characterized by a position uj. The dynamics of the droplets could be modelled by a 
phonon-like Hamiltonian:

HD ¼
X

j

p2j
2M

þ 1
2
Mω2

0ðujþ1 � ujÞ2
" #

; ð14Þ

where M denotes the mass of the droplet, pj is the momentum conjugate to uj 
and ω0 is the characteristic energy depending on the interactions between the 
droplets. This motion would be coupled to the degrees of freedom of the phase in 
the Hamiltonian in equation (1) by introducing a uj dependence of the Josephson 
coupling: if two droplets get closer, J should increase. The precise form would 
need to be determined, but some exponential dependence seems plausible. If 
the displacements of the droplets are very small, one can expand the Josephson 
coupling as a function of the displacements of the droplets to obtain the Josephson 
coupling between the droplets j and j + 1 via

J jþ1;j ¼ J0 � Aðujþ1 � ujÞ; ð15Þ

where A is a positive quantity. Therefore, the two Hamiltonians in equations (14) 
and (1) with the coupling in equation (15) would, in principle, allow to incorporate 
the coupled dynamics of the degrees of freedom of the phase and the vibrations of 
the droplet ‘lattice’.

Time traces of ΔΦ and behaviour of AM and AΦ. We have studied the rephasing 
dynamics at different scattering lengths. Extended Data Fig. 5a shows the full time 
evolution of the experimentally measured ΔΦ as a function of the calculated L

I
. 

From this data, we also extract the initial rephasing rate ∣R∣ and the saturation 
value 〈ΔΦ〉sat, as shown in Fig. 5. For L

I
 within the ID regime, ΔΦ remains large 

(>0.5) for the entire th (blue region); therefore, we can conclude that rephasing 
is absent. As L

I
 increases, ΔΦ gradually approaches small final values (~0.15) at 

longer evolution times (red region), that is, the system rephases.
From the time traces, we also analyse the long-time behaviour of AΦ and AM as 

a function of L
I

. As demonstrated in previous works13,25, at equilibrium, AΦ and AM 
are powerful parameters to pinpoint the different quantum regimes in the phase 
diagram. In the SSP, AΦ/AM ≈ 1, whereas in the ID phase, this ratio tends to zero 
since AΦ vanishes. As shown in Extended Data Fig. 5b, the value of AM at a longer 
hold time (th = 100 ms) is substantial in the whole range investigated, indicating the 
persistence of density modulation in the system, and it varies only weakly with L

I
. 

Differently, AΦ has a clear dependence on the density link. Its value at th = 100 ms 
nearly vanishes for L

I
 < 0.001, evidencing a final phase-incoherent state (ID 

regime), whereas at large L
I

 > 0.01, AΦ and AM are nearly equal.
The exact dependence of AM on L

I
 is not completely obvious and deserves 

some explanation. From equation (7), we see that AM, which is expressed as 
AM ¼ hjPiji ¼ gð0ÞhjPND�1

j¼1 expðiΔθjÞji
I

, contains (1) information on the 
individual droplet density profile via g(0) and (2) residual information on 
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the coherence of the system via the averaged length of the vector of the phase 
difference hjPj expðiΔθjÞji

I
. In the fully coherent case, this length is identically 

equal to ND − 1, whereas in the fully incoherent case, it has an average of only ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ND � 1

p
I

. This change explains the abrupt jump in AM observed when the droplet 
array becomes partially incoherent. We note that the observed jump with a value 
divided by ~1.5 is compatible with the predicted number of droplets in our array, 
namely, ND = 4. We also note that the smooth increase in AM for decreasing as both 
in the incoherent (L

I
 < 0.01) and in the coherent (L

I
 > 0.01) regions are expected 

from the proportionality to g(0). Here g(0) indicates the individual droplet peak 
density and typically scales as the inverse of the droplet size. It is thus expected 
to increase for decreasing as. We highlight again, as stated in Methods, that the 
information on the phase coherence of the array contained in AM is much less 
dominant than that in AΦ, where the length of the phase-difference vector is 
measured after performing the ensemble average, jhPj expðiΔθjÞij

I
. Therefore, AΦ 

is expected to cancel in a fully incoherent case rather than simply being reduced by 
a factor of 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ND � 1

p
I

.

Atom number evolution. When connecting the rephasing behaviour shown in 
Fig. 4, where 〈ΔΦ〉sat depends on L

I
, to the phase diagram, the atom numbers 

of the thermal and coherent part may also show differences after the complete 
phase-scrambling sequence. To this end, we extract the total atom number, Ntotal, 
via a pixel count from each unprocessed TOF absorption image. We then subtract 
the thermal background via a 2D Gaussian fit (Methods) to obtain the atom 
number in the coherent part, Ncoherent. The width of the thermal background at the 
given TOF allows to determine the temperature T. Extended Data Fig. 3 shows 
Ntotal, T, Nthermal and Ncoherent as a function of the hold time th for three exemplary 
rephasing B fields, namely, 1.65 G (blue), 2 G (light blue) and 2.43 G (red). These 
correspond to L ’

I
 4 × 10–6, 4 × 10–4 and 1 × 10–1 and thus to the ID, intermediate 

and SSP regimes, respectively. Regardless of the chosen value of L
I

, the individual 
Ntotal, Nthermal and T essentially coincide and decrease continuously with increasing th 
in a similar manner. This behaviour suggests the remaining plain evaporation from 
the ODT during th.

From the description of an ideal BEC, we can simply approximate

Ncoherent ¼ N total 1� T
TC

 3
 !

; ð16Þ

where the phase transition’s critical temperature TC mainly depends on the trapping 
frequencies ωx,y,z and Ntotal. From our measured Ntotal and T, we would expect a 
decrease in Ncoherent for all the rephasing B fields. However, similar to AΦ, AM, 〈ΔΦ〉sat 
and ∣R∣ (Fig. 5d), we observe three distinct behaviours for Ncoherent depending on 
L
I

. For small L
I

 < 0.001 (ID regime) Ncoherent decreases with th, whereas for large 
L
I

 > 0.01 (SSP regime), Ncoherent increases, with relative changes of up to 30% at 
th = 100 ms compared with the respective initial values. In the intermediate-L

I
 

regime, Ncoherent remains almost constant. A possible explanation for the occurrence 
of these three behaviours might be the differences in their rate of three-body loss. 
Although in the investigated B-field regime, the three-body loss coefficient is 
almost constant, the increased peak density expected in the ID regime results in a 
higher three-body loss rate, which can surpass the plain evaporation rate and thus 
result in a decreasing Ncoherent. The lower peak density in the SSP, on the contrary, 
could result in a lower three-body loss rate and thus lead to an increasing Ncoherent 
via plain evaporation.

Data availability
Source data are available for this paper51. All other data that support the 
plots within this paper and other findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1 | Wavelength of the modulation and finite-sampling effect. a, Difference between incoherent and coherent mean of the density 
profiles in the ID regime (1.65 G), peaking at the modulation wavelength d ≃ ± 2 μm (dashed lines). b, histograms of 106 realisations (each) for 
calculations of ΔqΦ from uniformly random phases Φi, for q = 35 (green) and q = 100 (yellow) draws, respectively. The dashed vertical lines reflect the 
confidence interval enclosing 68.3 % (‘one σ’) of the calculated values. The solid lines depict a Beta distribution with same mean and variance as the 
drawn distribution of ΔqΦ (no free fit parameters).
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Extended Data Fig. 2 | estimated scattering length. calculated B-to-as conversion for 164Dy. red and blue shaded areas indicate the SSP and the ID region, 
respectively. The grey area indicates the BEc region, while the yellow areas indicate regions around the two narrow Feshbach resonances located at  
2.174 G and 2.336 G where we observe increased atom loss. We estimate as,SSP = 88 a0 in the SSP at 2.43 G and as,ID = 76.9 a0 in the ID at 1.65 G.
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Extended Data Fig. 3 | Temporal evolution of the atom numbers and temperature in the ID regime and SSP. a, Total atom number Ntotal, b, temperature T 
and atom numbers of c, the thermal and d, the coherent part, Nthermal and Ncoherent, as a function of the hold time th. The data sets at 1.65 G (blue) and 2.43 G 
(red) correspond to the ID regime and the SSP, respectively, whereas the one at 2 G (light blue) corresponds to the intermediate regime.
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Extended Data Fig. 4 | The global phase variation α from the rTe simulation of a scramble-and-rephase protocol. a, Evolution of α over the hold time th. 
The solid orange line depicts an exponential fit to the data. In the inset, the integrated density n and the phase profile θ are exemplarily shown for t* = [3.5, 
9.5, 60.5] ms (note the corresponding color filling of the plot markers). b, residuals from the exponential fit to α.
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Extended Data Fig. 5 | Dependence of experimental rephasing dynamics on the density link strength L
I

. a, Temporal evolution of ΔΦ (color map) at 
different L

I
 starting from phases scrambled in the ID regime. For each th we record q≥35 individual experimental realizations. For large L

I
 the system 

recovers its global phase coherence (ΔΦ ≃ 0), whereas for small L
I

 it does not (ΔΦ ≃ 1). b, AM (circles) and AΦ (diamonds) for the same data set at 
long hold time, th = 100 ms. The error bars (partly covered by plot markers) are statistical standard errors of AM and AΦ. The red filled pair of symbols 
corresponds to the data set presented in Fig. 3.
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4
Bloch oscillations and
matter-wave localization

This chapter describes dipolar quantum gases of erbium atoms confined in a one-dimensional
optical lattice, creating an array of quasi-2D planes. In such a platform, the new states
arising from the stabilization effect provided by the quantum fluctuations and the softening
of Bogoliubov modes are still unexplored. As we will see, in this geometry, the beyond
mean-field effects are not the only stabilization mechanism, indeed the kinetic term can also
avoid the collapse in the attractive interaction regime. We will refer to these states as soliton
states that, like the droplet ones, are lattice-bound, i.e., they have a finite size in the plane
and would not expand even without the radial harmonic confinements.

This chapter is organized as follows. Section 4.1 summarizes the basic knowledge to describe
one-dimensional lattices, focusing on the single-particle physics. Section 4.2 introduces the
fundamental properties of Bloch oscillations. Section 4.3 extends the lattice description to a
many-body system and introduces the Bloch-oscillations dephasing rate as a tool to probe the
interaction. Section 4.4 first illustrates the experimental realization of the one-dimensional
optical lattice, and then presents the phase diagram with the possible quantum phases achiev-
able in this geometry. Finally, Sec. 4.5 shows the publication, in which our group studied the
system using Bloch oscillations and found the localization into a single lattice site. In this
work, we also uncover, in a phase diagram, the regime in which the ground state is radially
self-bound and highlight the soliton and droplet regime.

4.1 One-dimensional lattice

Optical lattices are nowadays widely used in the ultracold community [Mor06, Blo08]; the
main reason is that they are relatively simple to realize in the experiment and open many
possibilities. On the one hand, these systems simulate the behaviour of strongly correlated
electrons in solid-state crystals, assembling variations of Hubbard models [Lew07, Dut15].
On the other hand, optical lattices create an interferometric tool to assess the importance
of mean-field interactions. To mention few examples: lattice modulations spectroscopy is a
standard technique to establish the scattering length [Kol06, Bai16a], Bragg spectroscopy is
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106 4 Bloch oscillations and matter-wave localization

used to study the excitation spectrum, see Sec.2.5, and Bloch oscillations are used in atom
interferometry [Cla15].

4.1.1 Single-particle physics: Bloch theorem

We will exploit Bloch oscillations, a single-particle effect, to understand the many-body
behavior of a dipolar quantum gas in an optical lattice. Hence, it is worth introducing
some general concepts and starting from the Hamiltonian of a single particle confined in a
one-dimensional periodic potential, which reads:

H = − ℏ2

2m
∇2 + Vlatt(r), 4.34

where the first term represents the kinetic energy, with m mass of the particle and Vlatt(r)
the periodic potential. In the case of electrons in a solid, this potential is generated by
their interactions with the ions, see e.g. Ref. [Ash76], whereas in our case, this is externally
imposed by the interference of a laser beam superimposed on its retroreflection. The resulting
potential reads:

Vlatt (z) = V0 sin2(klz), 4.35

where kl = 2π
λ is the wavenumber and λ is the wavelength of the laser beam. In this expres-

sion, we neglect the finite size of the beam. Table 4.1 defines some convenient parameters
for this chapter that are commonly used by the ultracold-gases community:

Lattice parameters

Lattice spacing alatt = λ
2

Lattice wavenumber kl = 2π
λ → kl = π

alatt

Recoil energy ER =
ℏ2k2l
2m → ER = ℏ2π2

2ma2latt

Adimensional lattice depth s = V0
ER

Table 4.1: Lattice parameters commonly used in ultracold-gases experiments.

We can use the Bloch theorem to look for solutions of the Hamiltonian 4.34 (for more details
see Refs. [Ash76, Mor06]),

Hψq(z) = E(k)ψq(z), 4.36

where q is the quasi-momentum parameter defined within the Brillouin zone (BZ), q ∈ BZ =
[−ℏkl, ℏkl]. The theorem states that the solutions can be written as the product of a function
uq with the periodicity of the lattice and a plane wave.

ψ(n)
q (z) = u(n)q (z)eiqz, 4.37

Here, n denotes the band index, since for each quasi-momentum q there are many solutions

corresponding to the different energy bands. This theorem is extremely useful because ψ
(n)
q (z)
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is a generic function defined in real space R, whereas the solution can be now restricted to

the periodic function u
(n)
q , which is defined inside the lattice period. Note that the real

wavefunction ψ
(n)
q (z) does not need to maintain the symmetry of the optical lattice with the

exception of the q = 0 case, where ψ
(n)
q=0(z) = u

(n)
q (z).

It is also worth noticing that we can rewrite the eigenvalue problem 4.36 as a Mathieu
differential equation by using the trigonometric rule sin2(z) = 1/2 (1 − cos(2z)):

∂2

∂z̃
ψ(z̃) + (aM − 2qM cos(2z))ψ(z̃) = 0. 4.38

Here, we used the rescaled z̃ = qz. The Mathieu parameters (aM, qM) are equal to aM =
E/ER − s/2 and qM = −s/4, respectively.

For a sinusoidal periodic potential, the eigenvalues and eigenstates can be calculated both
analytically and numerically [Hum01]. Here, we limit our discussion to the results.

Figure 4.1 shows the free particle energy spectrum in the Brillouin zone as a function of the
lattice depth. It is strongly modified by the presence of the lattice, with the following feature
emerging:

� at small momenta |(ℏkl)| ≪ 1 in the lowest energy band, the spectrum is still quadratic
and the atoms feel the underlying lattice by moving with an effective mass;

� at the edge of the Brillouin zone, the symmetry of the system leads to a flat derivative
of the energies, ∂E

∂q → 0;

� the spectrum is divided into bands with a finite gap between them.

We can now define the bandwidth BWn = max(En)−min(En) of the n-band, and the energy
gap ∆n = max(En) − min(En+1). Figures 4.2(a,c) display the evolution of the width of the
band for the first 5 bands and Fig. 4.2 (b) shows the energy difference of min(En)−max(E1).
Note that for the lowest line this corresponds to the energy gap.

From the band structure, it is possible to directly visualize the tunneling term J , which gives
the intersite gain in kinetic energy. This is directly proportional to the bandwidth and given
by:

J =
max(E0) − min(E0)

4ER
. 4.39

4.1.2 Single-particle physics: Wannier function

The Bloch solutions are delocalized over the full lattice sites. However, the degree of localiza-
tion of the wavepackets depends on the lattice depth. In the case of a deep lattice V0 ≫ Er,
it is convenient to introduce the Wannier function [Wan37], which is defined as the Fourier
transform of the Bloch function:
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Figure 4.1: Single-particle energy spectrum. Energy spectrum as a function of the lattice
depth in the Brillouin zone. The black lines denote the energy bands for three values of the lattice
depth ([0 , 8, 16] ER).

wn (z − zj) =
1√
M

∫ π/alatt

−π/alatt

ϕ(n)q (z)e−iqzj dq, 4.40

where M is a normalization factor. This wavefunction is well localized at the lattice site
R in real space. In this case, we can understand that the tunneling element J represents a
localized atom hopping from the lattice site j to the adjacent one j ± 1. This is then given
by the following overlap integral:

J =

∫
dzwn (z − zj)

(
− ℏ2

2m

∂2

∂z2
+ Vlatt (z)

)
wn (z − zj+1) . 4.41

Note that, in this regime, the recoil energy is smaller than the local trapping potential
in each site ℏω0 = 2Er (V0/Er)

1/2. Therefore, each local site supports many bound states.
In our experiment and for most of the ultracold atom experiments with optical lattices, the
atomic motion is restricted to the lowest energy band thanks to an adiabatic loading. Hence,
the lattice band index n is omitted from now on. The dispersion relation of this band can
be obtained by solving the Mathieu differential equation:

ϵ(q) =
3

2
ℏω0 − 2J (cos qa) . 4.42

In Eq. 4.42, the amplitude of the cosine term is 2J , hence we find the result of Eq. 4.39,
which connects the energy bandwidth to the tunneling J . As a final remark, it is worth
noticing that for deep lattices the Wannier function is well approximated by a Gaussian of
the form:

w(z) ≈ wG =
(
πl2latt

)−1/4
e−z2/2l2latt , 4.43

where llatt = (kl 4
√
s)−1 is the harmonic oscillator length of the lattice site.
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Figure 4.2: Energy band properties. (a)Energy width as a function of the lattice depth. Energy
gap between adjacent bands (b), and bandwidth (c) as a function of the lattice depth. The dashed
line corresponds to the lattice depth used in the publication presented in Sec. 4.5.

4.2 Bloch oscillations

Bloch oscillations is a phenomenon, which describes the motion of electrons in a crystal
structure under the influence of an electric static field. It is now well known that, as the
name suggests, this motion is oscillatory rather than a uniform accelerated motion. This
process is quite generic and was observed also with cold atoms loaded in a periodic potential
under the influence of a constant force Fext. The Hamiltonian describing the system is
referred to as the Wannier-Stark Hamiltonian, and it reads

HW = − ℏ2

2m
∇2 + Vlatt(z) + Fextz, V (z + d) = V (z). 4.44

Differently than in Eq. 4.34, here the external force breaks the lattice symmetry since
Veff(z + d) ̸= Veff(z), where Veff = Vlatt(z) + Fextz. Note also that if E0 is an eigenvalue of
the problem HWΨ = EΨ, one can construct the commonly named Wannier-Stark ladder of
solutions EnW = E0+nWdF where nW is an arbitrary integer. Figure 4.3 gives an illustration
of the potential and of the eigenvalues of the Wannier-Stark ladder. A simple picture of the
Bloch oscillations can be obtained by a semi-classical approach that considers a wavepacket
with an initial quasi-momentum q0 prepared in the lowest energy band. In presence of an
external force we can write:

ℏ
dq

dt
= Fext. 4.45

By integrating over time, we find that the evolution of the quasi-momentum is given by:

q(t) = q0 + Fextt/ℏ. 4.46

This linear increase in momentum is a characteristic of the Bloch oscillations. We can now
use the periodicity of the BZ to find the period of the oscillation:

2klatt = FextTBO/ℏ → TBO = 2klatt ℏ/Fext. 4.47

The Bloch period (TBO) depends linearly on the lattice wavenumber and it is inversely
proportional to the force. When the momentum of the wavefunction reaches the edge of
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Figure 4.3: Wannier-Stark ladder. The sum of the lattice potential with the external force gives
rice to the Wannier-Stark ladder (black line). The dotted line represents the external force. The blue
lines inside the potential show the eigenvalue solutions.

the Brillouin zone a Bragg reflection occurs. This gives rise to the famous sawtooth signal
looking at the position of the cloud after a time of flight. Before considering the many-body
contribution to the Bloch oscillations, it is interesting to compare the Bloch oscillations of
the erbium system in an optical lattice to a standard semiconductor like GaAs. Table 4.2
summarizes the typical parameters:

Bloch oscillations parameters

Erbium GaAs

Lattice spacing 532 nm 0.56 nm

Typical Force Gravity Electric field

Typical Force strength 2.7 × 10−24 N 6.4 × 10−13 N

Period 0.5 ms 1.8 ps

Scattering time 100 ms 0.2 ps

Table 4.2: Typical parameters for Bloch oscillations of erbium atoms trapped in an optical lattice
and in a standard GaAs semiconductor.

In a cold atom experiment, a dilute gas is loaded in an optical potential realizing an ideal
platform to observe Bloch oscillations. The time scale of the Bloch period, typically ms is
much greater than the typical collisional time. Instead, in a bulk GaAs semiconductor the
scattering rates are larger than the oscillation frequencies, hence it is not possible to observe
Bloch oscillations. Nevertheless, they were observed first in semiconductors by realizing
artificial superlattice. In this case, it was possible to reduce the period of the oscillation by
engineering an effective larger lattice spacing.
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Bloch oscillations and more generally atom interferometry have been widely used to get
an accurate determination of fundamental quantities such as the gravitational accelera-
tion [Cla05, Fer06], and the fine structure constant α [Bat04, Cla06, Cad08]. In fact, as
shown in Eq. 4.47, the Bloch-oscillations period is inversely proportional to the driving force,
from which one can determine the gravitational acceleration, and directly proportional to ℏ
from which one can infer the fine structure constant. Many-body effects arising from the
inter-atomic interactions can lead to a damping of the Bloch oscillations. These effects limit
the observation time, and therefore the precision of the measurements.

4.3 Many-body physics: mean-field model

In Chapter 2, we used the Gross-Pitaevskii equation to describe an ultracold Bose gas of
dipolar erbium atoms, trapped in a harmonic confinement. We will now extend this equation
to include the periodic potential. We will rely on the knowledge of single-particle physics
highlighted in the previous sections to reduce the otherwise demanding resource necessary
to solve this equation.

To describe our system, we can add the periodic potential of Eq. 4.35 to the GPE of
Eq. 2.11:

iℏ
∂

∂t
Ψ(x⃗, t) = H3DΨ(x⃗, t) = [ − ℏ2

2m
∇2 + Vharm (x⃗) + Vlatt (z) + g|Ψ(x⃗, t)|2

+

∫
d3x⃗′Udd

(
x⃗− x⃗′

) ∣∣Ψ
(
x⃗′, t

)∣∣2 +γQF|Ψ(x⃗, t)|3
]

Ψ(x⃗, t).

4.48

The atoms are now confined by the combination of the dipole traps and the lattice potential.
Equation 4.48 exhibits various solutions depending on the dipolar orientation and the exact
strength of the harmonic and lattice trap, leading to a rich phase diagram. Moreover,
resolving this equation can be computationally demanding. For this reason, we developed
a discrete effective one-dimensional eGPE, following Ref. [Bla20b]. In brief, we assume that
the wavefunction solution can be written in the following form:

Ψ(x⃗, t) = Φ(x, y, l, η)ψ(z, t) ≡ 1√
πl
e−(ηx2+y2/η)/2l2ψ(z, t), 4.49

where we separate the transverse and radial part of the wavefunction. We further assumed
that the radial part can be written as an asymmetric Gaussian with size l =

√
lxly and

aspect ratio η = ly/lx. Here, lx and ly are the half-width of the function at the 1/e value,
and Φ is normalized

∫
dx dy |Φ|2 = 1. We obtain the effective 1D eGPE by integrating along

the radial directions x, y, as follows:

Hz =

∫∫
dx dy Φ∗H3D Φ. 4.50

Note that up to now, we did not make any assumptions about the lattice depth. In fact, this
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effective one-dimensional eGPE was introduced in Ref. [Bla20a] without a lattice potential
to describe the supersolid and the droplet transition in a bulk system.

For a deep enough lattice, we can further simplify the equation by assuming the longitudinal
wavefunction as a sum of Gaussian functions, as in Eq. 4.43:

ψ(z, t) =
√
N
∑

j

cj(t)wG (z − zj) . 4.51

Here, cj is the complex wavefunction amplitude on lattice site j. Finally, we achieve a set of
discrete effective one-dimensional eGPEs by performing the integration over z:

iℏ
∂cj
∂t

= −J (cj+1 + cj−1)

+

(
−Fextzj + Vharm(z) + g1DN |cj |2 +N

∑

k

Udd
|j−k| |ck|2 + γ1DQFN

3/2 |cj |3
)
cj .

4.52

Here, Fext is the external force given in our case by gravity on the atoms. Finally, we
have introduced the effective interaction parameter g1D = g/

(
(2π)3/2l2llatt

)
and γ1DQF =

23/2/
(
5π3/2l2llatt

)3/2
γQF.

We can use this equation without the external force term Fext to find the ground state
solution and then study the dynamical evolution under the influence of the force. Further
information on the numerical approach to find the stationary state solution are given in the
supplementary material of the publication in Sec. 4.5.

4.3.1 Overview of Bloch oscillations in ultracold atoms

Several experiments with alkali atoms have used Bloch oscillations as a tool to measure forces
with high precision or to study the interaction properties of the system. Using a BEC of
cesium atoms and a Feshbach resonance to tune the contact interaction, it was possible to
observe more than 20000 oscillations by finding the zero crossing of the scattering length,
essentially realizing an ideal Bose gas [Gus08]. In that regime, the limit was associated
with magnetic field noise resulting in effective non-zero interactions. Using sodium atoms,
in Ref. [Fat08], the dephasing rate of the Bloch oscillations was found to shift compared to
the zero crossing of the scattering length. The authors associated this shift to the pres-
ence of long-range interaction between different lattice sites. This was further confirmed by
measurements and theoretical simulations with different polarization angles of the dipoles.
It is also important to underline that the dephasing minimum was not associated with the
mean-field (MF) cancellation at as = add but rather with the minimization of the variance
of the energies in the different lattice sites.

In the case of dipolar erbium atoms, the stronger dipole-dipole interaction does not only
further shift the mean-field cancellation but, as we have seen in Sec. 2.3, leads to a regime
where the beyond mean-field term (BMF) plays an important role. In particular, the Lee

Huang Yang term depends on a
5/2
s , becoming relevant only if the mean-field cancellation
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happens at a large scattering length like for erbium, dysprosium, or alkaline mixtures. This
makes our experiment an ideal candidate to interferometrically assess the role of quantum
fluctuations and in particular to further test the LHY formulation.

4.3.2 Bloch oscillations in ultracold dipolar gases

The previous paragraph connects the minimum dephasing of the Bloch oscillations to van-
ishing mean-field interaction energies. However, in the case of LHY more caution is needed.
In fact, the speed of the wavefunction phase winding is given by the chemical potential that
differs in each lattice site. The minimum of the dephasing is the point with the minimum
variance of the chemical potential. We can relate the chemical potential to the energy via
the following relation:

µj =
(

2Ej
MF + 5/2Ej

BMF

)
/ |cj |2 , 4.53

where cj is the population in the lattice site j. It is possible to notice that in the case where
the beyond mean-field contributions are negligible the minimum variance of the chemical
potential corresponds to the minimum variance of the energies. Instead, when the BMF
contribution is relevant, the different scaling with the density of the LHY term causes the
different prefactor in Eq. 4.53. In the publication in Sec. 4.5, we compare the dephasing
rate obtained via an analytic model by using only the ground state to the one obtained by
analyzing the full real-time simulations.

The importance of the LHY term to describe the stabilization mechanism of a dipolar Bose
gas is established in our field. However, there are still discrepancies between theory and
experiments [Cho18, Pet19]. In this regard, Bloch oscillations, observed in the regime where
the mean-field term is minimized, can be a powerful tool to shed some light on the LHY term,
see Sec. 4.5. This experiment can be performed also in other platforms, such as mixtures
of quantum gases, where the mean-field term can be set to zero by tuning the intra and
the interspecies interactions [Sko21]. Performing such measurements could bridge the gap
between theory and experiments.

4.4 Quantum phases of erbium atoms in a one-dimensional lattice

The interplay of the long-range dipole-dipole interactions with the contact interactions gives
rise to many new quantum phases, as we pointed out in Chapter 3. In that chapter, we also
highlighted the importance of the trapping geometry. In this section, we add to our trapping
potential an optical lattice and explore how it affects the phase diagram.

4.4.1 Geometry

To understand the phase diagram, it is important to remind the geometry. We obtained
an array of surfboard potential by combining a one-dimensional lattice with two optical
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Our geometry
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• Array of surfboards (8 Erec)
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• Predominantly attractive
dipole-dipole interactions
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Figure 4.4: Geometry illustration. Optical dipole trap propagating along the y direction. Optical
lattice along the z direction. The combination of dipole traps (an additional optical dipole trap
not shown is propagating along the lattice direction) and the optical lattice creates an array of
surboard potentials with the onsite trapping frequencies ωx,y,z = 2π × (240(3), 30(3), 6000(100))Hz.
The magnetic field (B) is aligned along the elongated direction y.

dipole traps: the first one propagates along the y direction, and the second one propagates
along the vertical direction. For each surfboard, the lattice beams create the following
onsite trapping frequencies: ωx,y,z = 2π × (4(1), 4(1), 6000(100))Hz, where the 4 Hz refers
to the radial confinements and the 6 kHz to the harmonic confinement along the lattice
direction. Instead, the overlapping dipole traps add mainly radial confinement with the
following trapping frequencies: ωx,y,z = 2π × (240(1), 30(1), 217(1))Hz. The frequencies are
obtained by independent measurements. For the dipole traps, we rely on the excitation of the
dipole modes with the lattice potential off, whereas for the lattice we use the Raman-Nath
technique, see e.g. Ref. [Hec02]. Figure 4.4 shows the geometry of our system. Note that the
dipoles are polarized along the elongated direction (y) of the trap.

In this geometry, since the DDI is predominantly attractive in the plane, it is possible to
study the regime in which it compensates for the repulsive contact interaction realizing an
averaged zero or even attractive mean-field. Without the lattice, this configuration led to the
discovery of the macrodroplet. In our study, we want to shed light on the role that beyond
mean-field interactions and kinetic energy play in determining the phase diagram and the
system stability.

4.4.2 Single-site localization

In this regime, in which repulsive contact interaction and attractive DDI balance each other,
tuning the scattering length or the atom number gives rise to different ground states and
in particular a different number of occupied layers. In the typical experimental condition
N = [1e3− 5e4], as = [50− 80] a0, only few (1-7) lattice sites are populated. When reducing
the contact interaction or the atom number, the number of populated lattice sites reduces.
Fig. 4.5, plots the evolution of the population of the central lattice site as a function of
scattering length and atom number. We notice that for scattering lengths lower than 55 a0,
only one lattice site is significantly populated. It is important to highlight that this is an
interaction-driven way to realize quasi-2D planes. From the cuts in Fig. 4.5(b,c), it is possible
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Figure 4.5: Population of the central lattice site. (a) Population of the central lattice site
|c0|2 as a function of atom number and scattering length. Horizontal (b) and vertical (c) cut of (a)
for fixed atom number and scattering length, respectively.

to notice that the transition to a single occupied lattice site is smooth for low atom numbers
or high scattering lengths, but becomes more abrupt in the opposite cases. To detect this
transition to a single lattice site, in our experiment, we record the momentum distribution
of the cloud taken after TOF. The occupation of a single lattice plane gives rise to the
disappearance of the interference pattern. More in-depth, in the publication in Sec. 4.5, we
study the visibility of the interference pattern (contrast) C = nFT(|z∗|)/nFT(0) as a function
of the scattering length.

4.4.3 Two-dimensional bound states: solitons and droplets

We theoretically investigate the phase diagram as a function of the atom number and scat-
tering length using the 1D discrete model introduced in Sec. 4.3. In the publication presented
in Sec. 4.5, we show the phase diagram for our experimental system where we include the
redistribution of the atom in the different lattice sites when changing atom number or scat-
tering length. This section details the simpler case in which only the central lattice site is
populated. This results in studying a system trapped in a quasi-2D plane with the following
trapping frequencies ωx,y,z = 2π×(240(3), 30(3), 6000(100))Hz. The resulting phase diagram
is shown in Fig. 4.6. Note that the phase diagram presented in Sec. 4.5 and the one of Fig. 4.6
coincide for low atom number and low scattering lengths, where all the population is in the
central lattice site.

The presence of small or even attractive mean-field interactions allows for radially self-bound
solutions. These states are trapped by the lattice potential along the tight direction but are
self-bound radially. In such a state, if we switch off the radial trapping potential, the atoms
change size towards the new ground state, without expanding like in a typical gas phase.
Note that the condition for the self-bound in all directions coincides instead with negative
chemical potential that in our condition is obtained only for lower scattering length (∼ 40a0)
due to the presence of the tight confinement along z.

To theoretically discriminate the self-bound regime from the standard BEC case, in which the
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Figure 4.6: Phase diagram and energy landscapes. (a)Phase diagram as a function of atom
number and as. The white data points indicate the experimental atom numbers from the publica-
tion in Sec. 4.5. The colored blue (green) area represents the lattice-bound regime for the soliton
(droplet) case, see discussion in the main text. (b,c ) Energy landscapes as a function of the
radial widths lx and ly, in units of the radial harmonic oscillator lengths xho = 0.50(1) µm and
yho = 1.42(1) µm, respectively. Top (bottom) row shows the case without (with) the radial harmonic
trap, for (right) BEC (as, N) = (70 a0, 1.5 × 104), (center) droplet (as, N) = (65 a0, 1.5 × 104) and
(left) soliton (as, N) = (51.5 a0, 0.4× 104) regimes. The darker shading indicates the energy minima.

transverse confinement(x, y) is necessary to prevent the cloud from expanding, we calculate
the energy landscape from the discrete model. We then compare the fully-trapped case to
the one in which the confinement is only along z. For an easier visualization of the result,
we plot the energy landscape as a function of lx = l√

η and ly = l
√
η.

In the phase diagram, it is possible to find three different phases. The standard BEC phase
and the self-bound solutions: soliton and droplet. The difference between the two self-bound
solutions is the stabilization mechanism. In the droplet case, the LHY is the repulsive term
that stabilizes the condensate and avoids the collapse. However, for the soliton the stability
relies on the kinetic term.

Using the 1D discrete model we can compare the two energy functional terms associated
with kinetic energy and LHY:

[Ekin[l, η]; ELHY[l, η]] =


 ℏ2

2ml2

(
η +

1

η

)
;

(
2

5

)5/2 N3/2

(π3/2l2llatt)3/2
γQF

∑

j

|cj |5

 . 4.54

Note that both terms can avoid the collapse of the condensate due to their scaling with the
averaged size l. In particular, the kinetic term scales as 1/l2 whereas the LHY term as 1/l3.
For this reason, the kinetic term will usually prevail for larger system sizes, whereas LHY will
be predominant for smaller system sizes. Additionally, while the kinetic term is independent
of the number of atoms, the LHY term increases with atom number. For this reason, in
the case of large atom numbers and low scattering lengths, the LHY will be predominant
whereas in the opposite case the kinetic term will be more important.

Let’s imagine that we can switch off the LHY term. Consider a point in the phase diagram
in the radially bound regime and assume we increase the atom numbers. This corresponds
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Figure 4.7: Radial width (lx). Radial width lx as a function of N for different scattering lengths
(see legend). The double triangle indicates the transition from the soliton behaviour (decreasing
radial width) to the droplet one (increasing radial width).

to move vertically in the phase diagram. In this case, the mean-field attraction increases
and tries to reduce the size of the condensate. Since the kinetic term is independent of the
atom number, the wavefunction shrinks up to the new equilibrium point.

The situation is different if we switch off the kinetic term instead of the LHY contribution.
In this case, the LHY term scales faster with N compared to the mean-field interaction terms.
This will now determine an increase in size. We use this different behaviour to distinguish
the different phases in the phase diagram of Fig.4.6. Figure 4.7 plots the evolution of radial
width lx for different scattering lengths. We observe that the critical atom number for the
transition from soliton to droplet behaviour depends on the scattering length and increases
for higher scattering lengths. This can be understood from the energy functional in Eq. 4.54.
The different behaviour of the radial width as a function of atom number is also used to
differentiate between soliton and droplet in Sec. 4.5. Nevertheless, in the regime where more
than one lattice site is occupied, this definition is less rigorous and further studies of the
individual energy contributions are needed.
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Three-dimensional quantum gases of strongly dipolar atoms can undergo a crossover from a

dilute gas to a dense macrodroplet, stabilized by quantum fluctuations. Adding a one-

dimensional optical lattice creates a platform where quantum fluctuations are still unex-

plored, and a rich variety of phases may be observable. We employ Bloch oscillations as an

interferometric tool to assess the role quantum fluctuations play in an array of quasi-two-

dimensional Bose-Einstein condensates. Long-lived oscillations are observed when the che-

mical potential is balanced between sites, in a region where a macrodroplet is extended over

several lattice sites. Further, we observe a transition to a state that is localized to a single

lattice plane–driven purely by interactions–marked by the disappearance of the interference

pattern in the momentum distribution. To describe our observations, we develop a discrete

one-dimensional extended Gross-Pitaevskii theory, including quantum fluctuations and a

variational approach for the on-site wavefunction. This model is in quantitative agreement

with the experiment, revealing the existence of single and multisite macrodroplets, and

signatures of a two-dimensional bright soliton.
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The dipole-dipole interaction (DDI) between magnetic
atoms in an ultracold quantum gas has been key to the
discovery of supersolids1–3 and macrodroplets4,5, states of

matter with extremely intriguing and counter-intuitive
properties6,7. Macrodroplets are macroscopic quantum states
that behave in many ways like liquid droplets4,5,8,9. They are at
least an order of magnitude denser than normal Bose–Einstein
condensates (BECs), and can be self-bound. They exist in a
parameter regime in which mean-field theories predict the col-
lapse of the entire system when the attractive dipolar interactions
overcome the repulsive contact interactions. Instead, the system
remains stable thanks to the so-called quantum fluctuations, thus
providing one of the rare examples where beyond-mean-field
interactions substantially change the ground state of the
system10,11. Although the functional form of the beyond-mean-
field term, otherwise known as the Lee-Huang-Yang (LHY)
correction12, is still subject to intense study and debate13,14, its
importance is now undoubted. Isolating beyond-mean-field
effects may be crucial to settle disputes on its validity, particu-
larly in dipole dominated systems; however, it is very difficult to
have access to individual interaction contributions. Though, the
differing atom number scaling between mean-field and LHY
contributions provide a promising method to differentiate
between them.

Optical lattices enable powerful interferometric approaches to,
e.g., measure with high precision the zero-crossing of the scat-
tering length or of the mean-field interaction with the so-called
Bloch oscillation (BO) technique15–18, and to achieve an accurate
determination of the background scattering length via lattice
spectroscopy in Hubbard models4,19,20. Moreover, the presence of
the lattice itself may change completely the phase diagram of the
system, as shown in seminal experiments with contact interacting
gases21–23. Unique phenomena are predicted with the addition of
long-range DDIs24,25. Experiments with lattice-confined atomic
dipolar gases have already shown important results, e.g., the
realization of extended Bose–Hubbard models26 and spin
models27–30 in three-dimensional (3D) lattices. In 2D lattices,
forming quasi-1D tubes, suppression of dipolar relaxation31 and
the controlled breakdown of integrability32 have been observed.
Instead, up to now, 1D lattices, forming an array of quasi-2D
layers, have been used with large wavelengths to load a single
pancake trap33, or multi-layer traps to study the role of DDI in
the stability against collapse34. Further, theoretical proposals have
suggested that the DDI between layers not only can lead to
modifications within each layer35–38 but also to inter-layer bound
states39–41. Other works predict the existence of bright-soliton
structures along the lattice42 or anisotropic on-site solitons43,44.
However, those proposals lack the important stabilization
mechanism given by the LHY term, which is known to provide
many intriguing phases in continuous systems (e.g., harmonically
trapped), opening up many questions: What is the ground state of
an attractive dipolar gas in a 1D lattice potential? Can droplets be
delocalized over many lattice planes? Will solitonic solutions
continue to exist?

In the present work, we study an erbium dipolar gas in a 1D
optical lattice with dominantly attractive DDI. We employ BOs as
an interferometric tool to probe the interaction contributions of
the system, and to isolate the role of beyond-mean-field effects.
We find long-lived oscillations, associated with a minimum in the
dephasing rate, close to the cancellation point between mean-field
and beyond-mean-field interactions, and at scattering lengths
significantly shifted from the expected mean-field result. We
develop a discrete effective 1D extended Gross-Pitaevskii equa-
tion (eGPE) with variational transverse widths45,46. We find that
this minimum occurs when the chemical potentials on each site
are equal, not the energies–as has been employed successfully in

contact interaction dominated systems17,18–due to the difference
in density scaling between the interactions. The close corre-
spondence between theory and experiment shows the validity of
the LHY prediction, even while highly inhomogeneous densities
are expected to break the local density approximation12. More-
over, we see that for low scattering lengths the system undergoes a
structural transition to a single localized 2D plane, signifying an
interaction-driven approach to generate systems in reduced
geometries. Finally, using our theoretical model we produce a full
phase diagram of the system, revealing the impact of the LHY
contribution to the predicted 2D anisotropic soliton state43,
which is instead morphed into a droplet solution at high atom
numbers. Though, promisingly, we still find soliton-like
solutions exist.

Results and discussion
Setup and preparation. In the experiment, we prepare a degen-
erate dipolar gas of erbium atoms in a one-dimensional optical
lattice as follows. We start with a dipolar quantum gas of 5 × 104

spin-polarized 166Er atoms confined in a cigar-shaped optical
dipole trap47 elongated along y. Typical BEC fractions range from
60% to 80%. The dipolar length for 166Er is fixed at add= 66.5 a0,
where a0 is the Bohr radius. We change the contact interaction
between atoms and therefore the s-wave scattering length as, via
Feshbach tuning48 using a resonance located near zero magnetic
field20, as detailed in the “Methods” section. We fix the orienta-
tion of B to be along the weak axis (y) of the trap, making the
DDI dominantly attractive4,7.

Once the harmonically trapped cloud is prepared at the desired
as, we switch on a 1D optical lattice, aligned along the gravity
direction (z); see Fig. 1(a). The vertical lattice is created by retro-
reflecting a λ= 1064 nm laser beam. We load the planes by
exponentially increasing the lattice depth V0 to 8 Erec in 20 ms,
where Erec= ℏ2k2/2m= h × 10.5 kHz. Here, ℏ= h/2π is the
reduced Planck’s constant (h), m is the mass of 166Er atoms
and k= 2π/λ is the wave-vector of the lattice. The 1D lattice
forms an array of tightly confined quasi-2D planes with a trap
frequency along the tight direction ωz ≃ 2π × 6 kHz, correspond-
ing to an harmonic oscillator length zho= 100 nm. Due to the
transversal Gaussian profile of the lattice beam, we estimate a
residual trap of frequencies ωx;y ¼ 2π ´ ð4; 4ÞÞ Hz. The tunneling
rate, J, between planes is about h × 33 Hz. For these 1D lattice
parameters, ℏωz > kBT and the system is kinematically 2D49.

Bloch oscillations in a one-dimensional optical lattice. We first
aim at inducing Bloch oscillations to interferometrically assess the
role of beyond-mean-field effects and test the validity of the LHY
term. We thus suddenly switch off the dipole trap and let the
system evolve in the combined lattice and gravitational potential
for a variable hold time th. Finally, using standard absorption
imaging after 30 ms of time-of-flight (TOF), we record the evo-
lution of the momentum distribution and extract the position of
the main peak, qmax, as a function of th. Figure 1b shows an
exemplary set of absorption images during a single Bloch period
TBO. We observe the key paradigm of BOs, i.e., the linear increase
of the mean momentum due to the acceleration and the Bragg
reflection occurring at the border of the Brillouin zone50, well
described by fitting a sawtooth function to qmax.

The high sensitivity of BOs to interactions17,51 clearly appears
by tracing the evolution for two different as (see Fig. 1c, d), as the
interaction dependence is encoded into the dephasing rate. For a
contact-dominated gas (add < as= 90 a0, Fig. 1c), we see that the
BOs vanish within a few TBO. On the contrary, decreasing as, and
thereby going into the regime where contact interactions and DDI
nearly compensate each other (as= 60 a0, Fig. 1d), we observe
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persisting oscillations for more than 25 Bloch cycles, set by our
limited observation time (for details on the analysis of the
momentum distribution during Bloch Oscillation, see Supple-
mentary Note 4). To systematically study this effect, we repeat the
BO measurements for different values of as, and extract the
corresponding dephasing rate γ. As shown in Fig. 2a, we observe a
resonant-type behavior with γ showing a pronounced dip with a
minimum at as= 61 a0. This minimum is clearly different to the
point as ≈ add, where the variance of the mean-field energies
across different lattice sites cancel18, which would be expected
from previous observations17,51.

To get further insight on the origin of the minimum, we
develop a discrete effective 1D eGPE, inspired by the close
correspondence between predictions from discrete models and
experimental observations in non-dipolar52,53 and weakly
dipolar18 BECs. We separate the 3D wavefunction into radial
and axial contributions, allowing for a variational anisotropic
radial width and thus maintaining the 3D character45. Along the
lattice direction (z), we further decompose the wavefunction,
ψ(z, t), as a sum of Wannier functions w(z) of the lowest energy
band over all lattice sites: ψðz; tÞ ¼ ffiffiffiffi

N
p

∑jcjðtÞwðz � zjÞ, where N
is the atom number and cj(t) the complex wavefunction
amplitude on lattice site j, leading to a set of discrete effective
1D eGPEs, each including mean-field and beyond mean-field
interactions. For the beyond-mean-field interaction, the 3D form
of the LHY still fully applies since the contact interaction energy
exceed the confinement energy scale (for details on the 2D to 3D
crossover, see Supplementary Note 2)54. However, our system
may also open to further studies on the 2D to 3D crossover of the
LHY. We solve these equations coupled to a minimization of the

energy functional with respect to the variational parameters to
determine the ground states, benchmarking them against the full
3D theory. We then perform dynamic simulations of the expected
time evolution (see the “Methods” section), giving an accurate
dephasing rate (solid line) in Fig. 2a without free parameters.

In previous studies17,18, the point of minimum dephasing was
found to occur when the mean-field interaction energies vanish or
cancel. We isolate the mean-field contribution by removing beyond-
mean-field effects from our simulations (dashed line in Fig. 2a),
predicting a minimum at as ≈ add. However, this is in clear
contradiction with our experimental observations by a shift of 6a0
and a different overall shape due to the different scaling of the LHY
term with the density. Without LHY, the cancellation of mean-field
energies, Ej

MF, is equivalent to the cancellation of onsite chemical
potentials, given by μj ¼ 2Ej

MF=jcjj2. Note, μj dictates the wavefunc-
tion phase winding on each site through cj ¼ jcjje�iμjt=_. Reintrodu-

cing quantum fluctuations, we obtain μj ¼ ð2Ej
MF þ 5=2Ej

BMFÞ=jcjj2,
where the 5/2 appears due to the ∣cj∣5 density scaling in the beyond-
mean-field energy ðEj

BMFÞ. Figure 2b shows μj from the ground state
calculation for four scattering lengths, additionally indicating the
contribution of the LHY correction.

We observe that the point of minimal dephasing in the
experiment is close to the point where the variance of μj is
minimized. Indeed, within a semi-analytic approximation (see
Supplementary Note 3 for details on the analytic model of
dephasing), we find a direct relationship between γ and μj, which
reads γ∝ ∣μ1− μ0∣ when 3 lattice sites (j=−1, 0, 1) are occupied.
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Fig. 1 Bloch oscillations of a dipolar BEC in a one-dimensional optical
lattice. a Sketch of our experiment, consisting of a 1D optical lattice in the
z-direction, loaded with an erbium BEC from an optical dipole trap with
trapping frequencies ωx,y,z= 2π × (240(3), 30(3), 217(1)) Hz. Gravity acts
along z. b Absorption images after time of flight (TOF) showing the
momentum distributions during one Bloch cycle. c, d Evolution of the peak
position of the momentum distribution (qmax) for as= (71.6(1.0), 59.8(1.0))
a0, respectively. A sawtooth fit (solid gray) to the data yields
TBO= 0.469(4) ms, consistent with the expected value TBO= 2k/(mggrav).
The error bars represent the standard error on the mean over 4–6
repetitions.
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Fig. 2 Dephasing rate and chemical potential distributions. a Experimental
dephasing rate γ (circles) as a function of scattering length as. The green
solid line shows the theory result, with an uncertainty region (shaded area)
accounting for 20% atom number variation. The blue dashed line shows the
theory expectation without Lee-Huang-Yang (LHY). The gray dot-dashed
line gives the prediction of the semi-analytic approximation for γ. Error bars
show the 68% confidence interval (see Supplementary Note 4 for details
on the analysis of the momentum distribution during Bloch Oscillation). The
statistical uncertainties on the scattering length is smaller than the symbols
size. b Chemical potential per lattice site μj extracted from the discrete
model for as= (59, 60, 65.5, 70) a0(1, 2, 3, 4). The green area depicts the
LHY contribution to μj.
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This model can be extended to 5 lattice sites, giving the dot-
dashed line (Fig. 2a) which reproduces very well the system
behavior. These results lead us to believe that measuring the
dephasing rate through the chemical potential will be ubiquitous
to systems with arbitrary interaction potentials, which can be
substantiated through future work. Note, the total (MF+ LHY)
interaction energies over the system cancel at 57.5 a0, which does
not coincide with the minimum of the dephasing, occurring at
approximately 60 a0. Additionally, we mainly attribute the
asymmetric shape of the dephasing rate in both the theory and
experiment to the change of the number of occupied sites in the
ground state, which smoothly reduces from ~5 to 3 from 75 to
60 a0, before rapidly reducing to a single occupied lattice site
at ~55 a0 (see later discussion and insets of (Fig. 3a).

Interaction-induced single site localization. By decreasing the
scattering length below 57 a0, no BOs nor interference peaks are
visible anymore. We observe at the initial instant (th= 0 ms) that
the momentum distribution is already spread over the entire first
Brillouin zone. To quantify this, we study the contrast, C, of the
interference pattern of the initial momentum distribution as a
function of as, see Fig. 3a. We extract C, defined as the amplitude
of the momentum peaks at ±2ℏk relative to the zero momentum
peak, from the Fourier analysis of the TOF images (see the
“Methods” section). For large as, we observe the typical matter-
wave interference pattern, as expected from a coherent state
populating several lattice planes (see inset)53. As we lower as, C
first remains fairly constant. For as below a certain critical value
a�s � 57 a0, we observe a sudden loss of the interference pattern
with a sharp decrease of C to almost zero.

Additionally, we observe that this interaction-driven process is
reversible. To test the restoring of the interference pattern, we
employ the following protocol (see the “Methods” section): In
brief, we first prepare the system in the lattice at constant and
large as (as= 69(2) a0). We then ramp down as below a�s
(as= 56(2) a0) in 20 ms and wait until C stabilizes to a small
value; see Fig. 3b. Note that the interference pattern disappears
after about 10 ms, which is on the order of the tunneling time h/J
between two neighboring lattice sites. At this point, we quench as
back to its initial value and probe the time evolution of the system
towards its new equilibrium state. On a similar timescale, we
observe the reappearance of the interference pattern with an
increase of C, which then saturates to about 60% of its initial
value. We attribute the partial recovery of the contrast to an
increase of the losses and heating. These arise from the combined
effect of an increase of the density and three-body scattering rates
occurring when tuning the magnetic field closer to a Feshbach
resonance4. For comparison, we also show the data without
inverting the field ramp.

The observed broad distribution in reciprocal space suggests
that the system ground state has undergone a structural change,
with the macroscopic wavefunction localized in one lattice plane.
To verify this interpretation, we calculate the ground state of the
system as a function of as. When the repulsive contact interaction
dominates (as > add), we find an array of BECs occupying
approximately three to five lattice planes; see insets Fig. 3a. In
contrast, when the relative strength of the attractive dipolar
interaction with respect to the other terms in the Hamiltonian is
increased, the system reaches a critical point. Here, it undergoes a
phase transition to a quasi-2D state, in which all atoms are
localized into a single lattice plane to minimize their energy. This
purely interaction-driven phase transition–somewhat reminiscent
of a continuous version of a superfluid to Mott insulator
transition55–is stabilized by quantum fluctuations (LHY), pre-
venting the subsequent collapse of the system42,56. The predicted
critical point occurs exactly where we observe the disappearance
of the interference pattern in the experiments. We find an overall
excellent agreement between the measured and the calculated C
from both the discrete 1D model and the 3D theory without any
free fitting parameters, except for a rescaling factor to the contrast
amplitude to account for the thermal atoms in the experiment.

Two-dimensional bound states: solitons and droplets. The
observation of this phase transition to a quasi-2D localized state
driven by interactions points to the existence of a rich variety of
phases. The importance of the LHY correction and its peculiar
density scaling motivate us to investigate the properties of the
ground state as a function of as and atom number to identify
distinct phases in this unique setting. For this, we employ our
discrete model to derive a full phase diagram; see Fig. 4a. To
investigate the boundness of the states, we assess the impact of the
radial harmonic trap on the minimum of the variational energy,
which is a function of the radial widths lx and ly (the individual
energy contributions are shown in Supplementary Note 1). At
large scattering lengths, as expected, we find a stable delocalized
BEC phase, where the total interaction energy (mean-field +
LHY) is positive. The state is trap-bound, meaning that there is
no energy minimum without the radial harmonic confinement;
inset of Fig. 4a.

Reducing as, we find an energy minimum even without the
radial harmonic trap (Fig. 4b, c), highlighted as colored region in
the phase diagram. These quasi-2D self-bound solutions (the
lattice still provides axial confinement) are either extended over
several sites (lighter color) or localized to a single plane (darker
color). In the literature, there are two paradigmatic examples of
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Fig. 3 Interaction-induced localization. a Contrast of the interference
pattern after loading the lattice at different as. The green dot-dashed (black
solid) line represents the result of the 1D discrete model (3D extended Gross-
Pitaevskii equation, eGPE) multiplied by 0.7. The insets show the respective
density distributions along z of the 1D discrete model (bars) and 3D eGPE
(lines) and corresponding experimental averaged interference patterns after
TOF expansion (1,2). The statistical uncertainties on the scattering length is
smaller than the symbols size. bDynamic evolution of the contrast quenching
back (filled circles) or holding as (open circles); see text. The error bars
represent the standard error on the mean over 4–6 repetitions.
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self-bound objects with attractive mean-field energy: droplets and
solitons. Droplets can exist in one, two or three dimensions and
are stabilized through the LHY correction7. Stable bright solitons
only exist in quasi-1D systems with attractive contact interactions
and are stabilized against collapse purely by kinetic energy. In the
search for solitons in higher dimensions, theoretical studies have
suggested that the DDI could stabilize such 2D solutions43,44. To
the best of our knowledge, there have been no studies on the
effect the LHY correction has on this prediction, nor experi-
mental observation. In the present case, where many interactions
and kinetic energy compete, a classification of self-bound
solutions is much less straightforward. As a crucial distinction
between a droplet (Fig. 4b) and a soliton (Fig. 4c), we extract the
width lx from the energy landscape minimum in the radially
untrapped system, and investigate its scaling with atom number
(Fig. 4d). The soliton width (along the collapse direction) scales
inversely with increasing atom number57, while in contrast, the
droplet size increases in all directions with N58, as predicted in a
quasi-1D setting59. We use this distinction to draw a boundary
between the two phases, observing a phase transition at around
5000 atoms, for both single-site and multi-site solitons. The
overlaying of our measurements (Fig. 3a) onto the phase diagram
suggests that the experiments have already reached the unex-
plored regimes of both 2D self-bound droplet and dipolar

solitons. This opens the door to future experimental investigation
on the self-bound nature and properties of these 2D phases.

In conclusion, we theoretically and experimentally investigate
the behavior of a strongly dipolar quantum gas in a 1D optical
lattice. We employ BOs and characterize their dephasing rate as a
function of as. We observe a minimum in the dephasing shifted
6 a0 away from the purely mean-field prediction, providing an
interferometric measure of the beyond-mean-field contribution.
For low enough as, the system enters into a quasi-2D state which
is localized onto a single lattice plane, providing a genuine
interaction-driven path to reach reduced dimensions in dipolar
gases. Using our developed discrete theory model, we derive a full
phase diagram which confirms the observed localization transi-
tion. This also reveals signatures of quasi-2D self-bound dipolar
droplet solutions, and the long sought-after 2D anisotropic
dipolar soliton, first predicted in ref. 43 (see also44,60). Our work
paves the way for future studies of the soliton-to-droplet
crossover in a dipolar gas, as observed in a Bose–Bose gas61,
and of the “solitonic” nature62 of dipolar solitary waves63–67. A
future promising prospect will be to observe the density profiles
with in-situ imaging such to experimentally discriminate between
the soliton/droplet regimes.

Methods
Theoretical model. In this work, we use an extended Gross-Pitaevskii theory for
direct comparison to our experimental results. We employ both the standard three-
dimensional form of the extended Gross-Pitaevskii equation (eGPE) and derive a
discrete effective one-dimensional eGPE. Starting with the three-dimensional case,
our system can be described by the 3D eGPE of the form4,68–70

i_
∂

∂t
Ψð x!; tÞ ¼

h
� _2

2m
∇2 þ Vharmð x!Þ

þ V lattðzÞ � Fextz þ gjΨð x!; tÞj2

þ
Z

d3 x!0
Uddð x!� x!0ÞjΨð x!0

; tÞj2

þ γQFjΨð x!; tÞj3
i
Ψð x!; tÞ;

ð1Þ

where the wavefunction Ψ is normalized to the total atom number
N ¼ R

d3 x!jΨj2. The atoms are confined in a harmonic potential Vharm ¼
∑ξ¼x;y;z

1
2mω2

ξ ξ
2 with single particle mass m and trap frequencies ωξ, together with

the lattice potential V latt ¼ sErecsin
2ðkzÞ where s is the tunable lattice depth in

multiples of the recoil energy Erec and k= 2π/λ is the lattice spacing in reciprocal
space. The mean-field interaction contributions are g= 4πℏ2as/m for the contact
interaction, governed by the s-wave scattering length as, and the long-ranged
anisotropic dipolar interaction potential Uddð x!Þ ¼ 3_2add=m 1� 3cos2θ

� �
=j x!j3,

where add ¼ μ0μ
2
mm=12π_2 with magnetic moment μm and θ is the angle between

the polarization axis (y-axis) and the vector between neighboring atoms. We also
include beyond-mean-field effects through the quantum fluctuations term

γQF ¼ 32
3 g

ffiffiffiffi
a3s
π

q
1þ 3

2 ε
2
dd

� �
12, which depends on the relative strength between the

dipolar and short-ranged interactions εdd= add/as. Finally, Fext= ggravm denotes
the external force exerted on the system by gravity.

In this work, we employ the imaginary time-evolution technique on Eq. (1) in
order to find stationary solutions for the wavefunction in the lattice, without
gravity. For various atom numbers and scattering lengths, we use a numerical grid
of lengths (Lx, Ly, Lz)= (6, 33.3, 6) μm, with corresponding grid points
128 × 256 × 128. The dipolar term is efficiently calculated in momentum space, and
we use a cylindrical cut-off in order to negate the effects of aliasing from the
Fourier transforms71.

To derive the effective one-dimensional model, we follow ref. 45 by assuming a
wavefunction decomposition

Ψð x!; tÞ ¼ Φðx; y; l; ηÞψðz; tÞ � 1ffiffi
π

p
l e

�ðηx2þy2=ηÞ=2l2ψðz; tÞ ; ð2Þ

with variational parameters l and η representing the width of the radial
wavefunction and the anisotropy of the state, respectively. Integrating out the
transverse directions (x, y) in Eq. (1) upon substitution of the ansatz above gives the
continuous quasi-one-dimensional eGPE, which when combined with a variational
minimization of the energy functional to find (l, η) gives close agreement to the full
3D eGPE45. We further decompose the longitudinal wave function ψ(z, t) into a
sum of Wannier functions w(z) of the lowest energy band over all lattice sites

ψðz; tÞ ¼ ffiffiffiffi
N

p
∑
j
cjðtÞwðz � zjÞ ; ð3Þ
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Fig. 4 Phase diagram and energy landscapes. a Phase diagram as a
function of as and atom number. The white region denotes a trap-bound
BEC extended over several lattice sites. The colored regions denote quasi-
2D self-bound solutions: a droplet (green), a soliton (blue), each either
extended over several lattice sites (lighter shade) or localized (darker
shade, >95% of the atoms are localized in the central lattice plane). Circles
show the atom number from our experimental data points in Fig. 3a. The
statistical uncertainties on the scattering length is smaller than the symbols
size. a–c Energy landscapes as a function of the radial widths lx and ly, in
units of the radial harmonic oscillator lengths xho= 0.50(1) μm and
yho= 1.42(1) μm, respectively, with (left) and without (right) the radial
harmonic trap, for (a) BEC (as, N)= (70 a0, 1.5 × 104), (b) droplet
(as,N)= (65 a0, 1.5 × 104) and (c) soliton (as,N)= (51.5 a0, 0.4 × 104)
regimes, with darker shading at the minima. d Radial width lx versus N for
as= 51.5 a0. The dashed line indicates the soliton-to-droplet transition
point, and the circles indicate the position of b, c.
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for complex amplitudes cj, and positions of lattice minima zj= (λ/2)j. For deep
enough lattices, the Wannier functions are well approximated by Gaussians of the

form wðzÞ ¼ πl2latt
� ��1=4

e�z2=2l2latt , with llatt ¼ ðk ffiffi
s4

p Þ�1. After multiplying on the left
by c�j and integrating over z, we obtain a set of discrete effective one-dimensional
eGPEs

i_
∂cj
∂t

¼ �Jðcjþ1 þ cj�1Þ þ �Fextzj þ VharmðzÞ þ g1DNjcjj2 þ N∑
k
Udd

jj�kjjckj2 þ γ1DQFN
3=2γQFjcjj3

� �
cj ;

ð4Þ
with the reduced effective one-dimensional parameters γ1DQF ¼
23=2=ð5π3=2l2llattÞ

3=2
γQF and g1D= g/((2π)3/2l2llatt). Here, J denotes the tunneling

rate between two neighboring lattice sites. The dipolar interaction coefficients
between lattice sites j and k depend both on the separation ∣j− k∣, and non-trivially
on the size l and anisotropy η of the transverse cloud. For the variational
minimization, we generate an interpolating function for a sensible range of (l, η)
and separations up to ∣j− k∣= 6 via

Udd
jj�kjðl; ηÞ ¼

Z
d3 x! jΨ0ð x!� zjj�kj êz ; l; ηÞj2

n

´
Z

d3 x!0
Uddð x!� x!0ÞjΨ0ð x!

0
; l; ηÞj2

�
;

ð5Þ

where Ψ0ð x!
0
; l; ηÞ ¼ Φðx; y; l; ηÞwðzÞ [see Eqs. (2) and (3)]. This allows us to

simply look up the values of Udd
jj�kj without having to recalculate for every time step

during the energy minimization. We note that the energy contribution rapidly
declines for separations larger than 2 sites, and find that 6 is more than sufficient to
quantitatively describe the physics.

To find the stationary state solution of Eq. (4) (without gravity) we employ an
imaginary time-evolution in combination with an optimization scheme, aiming to
find the state which minimizes the total energy functional

E½c; l; η� ¼ E?½l; η� þ Ek½c; l; η� ; ð6Þ
where c= (c1, c2,…, cn) for n total lattice sites. Here, E?½l; η� gives the energy
contribution from the transverse variational wave function, which reads

E?½l; η� ¼
_2

2ml2
ηþ 1

η

� �
þml2

4
ω2
x

η
þ ηω2

y

� �
: ð7Þ

The latter term of Eq. (6) gives the discrete energy functional for the amplitudes
cj, which includes the tunneling and all interaction terms

Ek½c; l; η� ¼ �∑
j
Jðcjþ1 þ cj�1Þcj

þ 1
2
Ng1D ∑

j
jcjj4 þ

1
2
N∑

j;k
Udd

jj�kjjckj2jcjj2

þ 2
5
N3=2γ1DQF ∑

j
jcjj5:

ð8Þ

Starting from an initial distribution of the amplitudes cj we first determine the
variational parameters (l, η), which is done via an optimization scheme minimizing
Eq. (8). Subsequently, we evolve the amplitudes in imaginary time using Eq. (4)
and repeat this process until we find the minimum of the total energy function Eq.
(6). Once we have the ground state of the system, we employ the discrete effective
one-dimensional eGPE in real-time to simulate the Bloch oscillations in the
presence of gravity. To account for changing transverse widths, after removing the
harmonic potential from the optical dipole traps, we take l and η from the
harmonic oscillator length calculated from the residual trapping potential of the

lattice beams, given by l ¼
ffiffiffiffiffiffiffi
lx ly

q
and η= ly/lx. This provides a good approximation

to the time averaged transverse behavior, which we have verified through
comparison with the 3D eGPE.

Experimental protocol. We prepare a 166Er spin-polarized BEC similar to ref. 4.
The magnetic field during the evaporation is along the z-axis with absolute value
∣B∣= Bz= 1.9 G (as= 80(1) a0), see Fig. 1a. The magnetic field sets also the value
of the scattering length thanks to a Feshbach resonance, centered close to 0 G. For
the magnetic field range considered in this work, the B-to-as conversion has been
precisely mapped out in previous experiments4,20. Before loading the lattice, we
rotate the magnetic field direction along the y-axis in 50 ms and change its absolute
value to set the scattering length. At this step, we typically achieve 5 × 104 atoms
with more than 60% condensed fraction in a cigar shape dipole trap with trapping
frequencies ωx,y,z= 2π (240(3), 30(3), 217(1)) Hz. For our experiments, the atoms
are then loaded in a 1D lattice by a 20 ms exponential ramp of the lattice depth.
This is the experimental protocol used in Figs. 1, 2, and 3a.

To study the reversibility of the interaction-induced transition to a single lattice
site (Fig. 3b), i.e., the evolution of the contrast due to a change of the scattering
length, we employ a different protocol from the one above. In fact, in our
experiment, the magnetic field along the y-direction can be changed on a timescale
of ≃20 ms, which is slower compared to the z-direction (≃1 ms). For this dataset,
we prepare the BEC with B= (0, 0.25, 1)G and then we load the lattice as described
above. We then linearly ramp the field in 20 ms to B= (0, 0.25, 0)G and record the

time evolution. In Fig. 3b, we study the contrast evolution after the ramp. For the
black dataset, the magnetic field is quenched back to the initial value after 10 ms.

For Fig. 4, we extract the atom number condensed in the lattice by releasing the
cloud from the combined ODT-lattice trap and by performing an absorption imaging
after 30ms of TOF. We integrate the density along the lattice axis and use a double
Gaussian fit on the integrated density profile. We repeat the sequence 4–8 times for
every scattering length. At low scattering lengths, we find a decreased number of
condensed atoms, see Fig. 4. We attribute this to an increase of three-body loss in the
vicinity of a Feshbach resonance4 and the increased density of the groundstate.

Contrast of the interference pattern. The density modulation that usually
characterizes a BEC loaded into a 1D lattice can be experimentally extracted from
the matter-wave interferometry after a TOF expansion55. To study the transition to
one single occupied lattice site, we record the density distribution as a function of
as. In more details, for each picture we perform a Fourier transform (FT) of the
integrated momentum distribution, n(qz). In the contact dominated regime, the
lattice induces two sidepeaks at ± q�z in n(qz). Consequently, in the FT analysis the
peaks are at z*≃ λlattice. The visibility of the interference pattern is then estimated
as nFT(∣z*∣)/nFT(0).

Data availability
Experimental data is available on reasonable request from the authors.

Code availability
Code used to generate the theory results is available on reasonable request from the
authors.
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SUPPLEMENTARY NOTE 1: ENERGY
CONTRIBUTION

The rich phase diagram of dipolar atoms relies on the
competition between the different interaction terms. In
Fig. S1 we assess the different interaction energy contri-
butions to Eq. (6) for a range of scattering lengths. For
as > add the total interaction energy is positive, and
it corresponds to a dilute BEC. Following as to smaller
values all interaction contributions are almost constant,
until at around as = 60 a0 there is a phase transition
from the BEC to droplet state, as identified in Fig. 4
of the main text. This sharp gradient ceases at around
as = 55 a0, where the atoms are localized to a single
lattice plane. Note that although the DDI offsite en-
ergy is typically only 10% of the onsite counterpart, it
constitutes a significant contribution to the total inter-
action energy in the system, shifting the BEC to droplet
crossover and localization transitions by a few a0.

SUPPLEMENTARY NOTE 2: 2D TO 3D
CROSSOVER

The dimensionality of the system is known to highly
influence the size and even the sign of the beyond-mean-
field contribution, in both Bose-Bose1–3 and dipolar4–6

gases. Here, we assess the validity of employing the full
3D LHY correction to our system. Following Ref. ,6 we
define the dimensionless parameter ξ = gn/ε0–dependent
on the contact interactions g, peak 3D density n, and
the confinement energy scale ε0 = ~2π2/2mz2ho–that in-
dicates which dimensionality regime our system is in. If
ξ & 1 we are safe to use the 3D LHY term, whereas if
ξ � 1 the 2D solution deviates from the 3D one. Deep
in the localized droplet regime, where the peak density is
on the order of 1022m−3, we find ξ ≈ 2, and the 3D LHY
as used throughout this work is valid. Even at large
scattering lengths, where the peak density is closer to
5× 1020m−3, we find ξ ≈ 0.5, which introduces an error
of less than 5% between the 2D and 3D LHY terms.6 In
this limit, the 2D LHY term may be more appropriate,
however in the dilute BEC phase the impact of the LHY
is minimal.

50 55 60 65 70 75
scattering length  a

s
 (a

0
)

-300

-200

-100

0

100

200

300

E
ne

rg
y 

(H
z)

E
int

 < 0

E
int

QF

DD
offsite

DD
onsite

Contact

FIG. S1. Interaction energy contributions. Scattering
length dependency of the individual interaction contributions
of the ground state solutions from the 1D model, calculated
for N = 104 atoms.

SUPPLEMENTARY NOTE 3: ANALYTIC
MODEL OF DEPHASING

Starting from the discrete 1D eGPE we decompose
the coefficients cj into amplitude and phase as cj =
|cj | exp(−iφj), and then integrate Eq. (4) in time to give

φj(t) =

(
− Fextzj + g1DN |cj |2 +N

∑

k

Udd
|j−k||ck|2

+ γ1DQFN
3/2γQF|cj |3

)
t

~

≡ (−Fextzj + µj)
t

~
, (S1)

with onsite chemical potentials µj , and where we have
also assumed that Fextd � J such that the amplitudes
|cj | are frozen.

Following Ref. ,7 we write the Fourier transform of the
quasi-1D wavefunction as

ψ(k, t) = w(k)
∑

j

|cj | exp[−i(kzj + φj(t))] = w(k)C̃(k, t) ,

(S2)
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FIG. S2. Analytic dephasing rate. (a)Evolution of the

function C̃, with k̃ normalized to the Brillouin zone in the
moving frame, and as = 60.5 a0. Here, the solution of Eq. (S4)

is td = 0.59s. (b)Time evolution of the central point of C̃,

showing when |C̃|2 crosses α = 0.5. The function C̃ is scaled

to the value at C̃(0, 0). (c)Analytic dephasing rate (γ =
1/td) obtained for the 3 lattice site approximation Eq. (S4)
and the 5 lattice site approximation Eq. (S5), compared to
the numerically obtained value from a real-time simulation of
the discrete model, Eq. (4).

where w(k) is the momentum space Wannier function,
and phases φj are given above. If all interactions are
set to zero this function is initially a delta function situ-
ated at k = 0 and moves in k-space as k̃ = k − Fextt/~.

Interactions broaden C̃(k, t), leading to a dephasing of

coefficients cj . Fig. S2(a) depicts |C̃(k, t)|2 as a function

of k at different times t, normalized to |C̃(0, 0)|2.

We extract an analytic approximation to the dephas-
ing time by considering the temporal behaviour of the
point |C̃(0, t)|2, i.e. at k̃ = 0. During dephasing this point
rapidly decreases through interference between neighbor-
ing sites. This quantity is plotted in Fig. S2(b) for a
few example scattering lengths. It reaches the thresh-
old α/C̃(0, 0) = 0.5 at the dephasing time t = td, where
many k-modes are now highly occupied. This time can
be found through the smallest positive solution of

α =

∣∣∣∣∣∣∣


∑

j

|cj | cos

(
µjtd
~

)


2

+


∑

j

|cj | sin
(
µjtd
~
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FIG. S3. Evolution of the 〈|qz|〉 . In the figure 〈|qz|〉 as
a function of time for as=58.8 a0. The points with red edges
are the one selected for the fit. The red line corresponds to
the fit result A(t− τ) + 0.5

Exact solutions to |C̃(0, td)|2 = α can be only found in
limiting cases. For the three lattice site case, with j =
−1, 0, 1 and noting the symmetry of |cj | = |c−j | we obtain

td =

∣∣∣∣arccos

(
4|c0c1|

α+ |c0|2 − 2

)
~

(µ1 − µ0)

∣∣∣∣ , (S4)

This relation is expected to give an accurate prediction of
the dephasing time for all states where only 3 lattice sites
are dominant. From this equation, one can see how the
dephasing time tends to infinity in the limit of equally
distributed chemical potentials, as observed in Fig. 2 of
the main text. We can extend this to 5 sites, but it is
not as trivial. One needs to numerically solve the tran-
scendental equation

α =
∣∣∣2− |c0|2 + 4|c0c1| cos

(
(µ0 − µ1)td

~

)

+ 4|c0c2| cos

(
(µ0 − µ2)td

~

)

+ 8|c1c2| cos

(
(µ1 − µ2)td

~

) ∣∣∣ , (S5)

for the smallest non-zero root td. We compare the results
from Eqs. (S4) and (S5) to the numerically obtained de-
phasing rate, γ = 1/td, in Fig. S2(c), as presented in
Fig. 2 of the main text, and find excellent agreement.

SUPPLEMENTARY NOTE 4: ANALYSIS OF
MOMENTUM DISTRIBUTION DURING BLOCH

OSCILLATION

When the Bloch oscillation dephases, the width of the
momentum distribution increases with time.8 To evalu-
ate the dephasing rate we analyze the 1D momentum
distribution along z, n(qz), as a function of the holding
time. Because of our limited vertical optical access, the
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1D lattice is not perfectly aligned with the z (gravity) di-
rection. We measure a tilt of 9(1)°. Such a tilt effectively
weakens the radial trapping strength, limiting our obser-
vation time to 12 ms, which anyhow allows us to observe
up to 25 BO period.

From n(qz), we can extract the maximum position
(qmax
z ) and the quantity 〈|qz|〉 , given by

〈|qz|〉 =
∑

qz

n(qz) |qz − qmax
z | .

This quantity is proportional to the width of the distri-
bution. In Fig. S3, we report 〈|qz|〉 for as= 65.7(1.0) a0.
To quantify the dephasing rate γ, we apply a linear fit to
〈|qz|〉 . For the fit, we select only the points at the center
of the Brillouin zone, up to the time when 〈|qz|〉 is reach-
ing the fully dephased configuration, 0.5~k. Indeed, when
the cloud is at the edge of the Brillouin zone, 〈|qz|〉 is arti-
ficially increased and it does not represent the dephasing,
as shown in Fig. S3. We define the dephasing rate γ as
the inverse of the time τ that the fitted function needs to
reach the value 0.5 ~k. Thus, using the fit parametriza-
tion A(t−τ)+0.5, where A and τ are the fitting variables
and t is the time, we can directly extract τ and its inverse
γ.

To determine the uncertainties with our non-linear
parametrization, we analyze the χ2(A, τ). We estimate
the uncertainties on our data points by assuming equal
statistical fluctuations around our fitting model and us-
ing the expected value

〈
χ2
〉
= Ndata − 2. Figure S4

shows a clear asymmetric shape for χ2, indicating asym-
metric uncertainties on our fit parameters. As we are
only interested in the uncertainties on τ , we consider

Pχ2(τ) = 1
N

∫
A
dAe−χ

2(A,τ)/2, with N a normalization
constant. Pχ2(τ) corresponds to the probability distri-
bution of τ for our fitting model. Finally, from Pχ2(τ),
we define the 68% confident interval of our dephasing
rate γ shown in Fig. S4.

In order to compare our experimental data with the
theoretical predictions, we repeat the same analysis with
the data from the 1D discrete model. Since in the ex-
periment the condensed atom number changes with the
scattering length, see Fig. 4, the atom number consid-
ered in the theoretical simulations varies accordingly. In
Fig. 2, we account for the experimental fluctuations by
taking an interval of ±20% of the BEC atoms number.
For each scattering length, we determine the extreme val-
ues of γ in the ±20% range, which we use to create the
shaded area.
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5
Conclusion and outlook

5.1 Conclusion

This thesis presents the work I have done in the ERBIUM lab in Innsbruck on dipolar
quantum gases of erbium atoms. I joined the team for my PhD studies at the beginning
of 2018, when the experiment was at the stage of being ready to implement the Bragg
setup. Since then, I worked in the experiment, as well as helped the team with theoreti-
cal simulations. These efforts resulted in 9 publications, among which five constitute the
core of this thesis. This work focuses on the regime of small mean-field interactions to
exploit the competition among kinetic energy, and the different interactions contributions
(contact interaction, DDI, quantum fluctuations). While the contact interaction is local,
the dipole-dipole interaction term is long-range and anisotropic. For this reason, it is not
possible to completely compensate one interaction with the other, and the resulting inter-
action will be momentum dependent. However, it was thought that independently of the
exact shape in momentum space of the interaction, being in the attractive regime would
lead to a collapse [San03, Kom07, Lah08]. This picture comes from neglecting the effect of
quantum fluctuations. In fact, beyond-mean field interactions can stabilize the system and
lead to novel quantum phases [Pet15]. In particular, one of the main focus of this thesis is
the supersolid state, a density-modulated state that reveals global phase coherence.

In the first publication, we study the excitation spectrum of the system in the standard
BEC phase via Bragg spectroscopy. It shows the presence of a fundamental ingredient for
supersolidity: the roton mode. This mode highlights a minimum at a finite momentum of
the dispersion relation. We study the softening when reducing the contact interaction and
found an associated increase in the density-density correlation. This mode is precursor to
crystallization, which occurs when the roton mode is softened.

In the second publication, we examine the phase of the system after softening the roton
mode. In this publication, we probe the simultaneous presence of off-diagonal and diagonal
long-range order: a supersolid state. This work is in collaboration with the Er-Dy team
in Innsbruck. While in Er, we found that the state has a lifetime on the order of 20 ms, in
164Dy, the lifetime is above 100 ms. This enabled us to carry out evaporative cooling directly
into the supersolid state.
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Probing the existence of this state raised many questions. In the third publication, we address
how a supersolid state reacts to excitations. Theoretically, we identify two branches in the
supersolid’s excitation spectrum. We characterize their respective crystal and superfluid
characters, linking the trademarks of supersolidity expected in infinite systems to the finite
trapped case of laboratory systems. By using a trap excitation scheme, we experimentally
found the presence of two branches of excitation reflecting the two broken symmetries of the
system. The upper branch in energy is connected to the excitation of the crystal, whereas
the lower branch is related to superfluid tunneling between the different density peaks.

In the fourth work, we study the response of a dipolar 164Dy supersolid to an interaction
quench between different phases, which is possible with dysprosium due to the long lifetime.
More specifically, we ramp the contact interactions into the insulated droplet regime, where
the absence of a link between the density peaks leads to a loss of the global phase coherence.
Afterward, we analyze the inverse transition in which the tunneling restores global phase
coherence. This study demonstrates superfluid flow through a dipolar supersolid.

Finally, we confine the atoms to quasi-2D layers where the onsite DDI is attractive. In this
regime, we study the system by performing Bloch oscillations. By using this tool, we were
able to evaluate the role that quantum fluctuations play in this geometry. We found that
the system tends to reduce the number of occupied layers when decreasing the scattering
length, up to the point that all atoms occupy a single layer. Moreover, in this geometry, the
competition between the different terms in the Hamiltonian makes the phase diagram rich,
with self-bound phases stabilized by the kinetic energy (soliton) or quantum fluctuations
(droplet).

Our studies improved the understanding of the quantum phases in dipolar BECs. The
publications of this thesis are the results of cooperation and friendly competition with many
other scientific teams, as the group of Tilman Pfau in Stuttgart, and the team led by Giovanni
Modugno in Pisa. Among the theoretical groups, we were inspired by the works done by the
group of Luis Santos in Hannover, Blair Blakie in Otago, Alessio Recati in Trento, as well
as Rick van Bijnen and Mikhail Baranov in Innsbruck. It has been an exciting experience
to be part of this team and to investigate these fascinating quantum phases with erbium
atoms. The next section summarizes some of the future research directions in the ERBIUM
experiment.

5.2 Outlook

In this thesis, we studied 166Er in two different trapping geometries.

In the first geometry, a cigar-shape confinement, we explored the physics of dipolar supersolid
states. However, the supersolid obtained with 166Er possesses only a few density peaks
and a lifetime that is limited by the high density, due to three-body losses. Recently, the
concept of dipolar supersolids was extended to mixtures. As a result of their multiple sources
of interaction, dipolar mixtures provide novel phases with spontaneous modulation that
overcome the need for quantum fluctuations. The resulting theoretically predicted supersolid
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phase can have similar peak densities to unmodulated BECs [Bla22], with the extension of the
crystal not limited by the density. By realizing these novel supersolids, we could understand
how the supersolid state’s properties scale from small to large systems and how they connect
to a thermodynamic limit. In our lab, we can explore this regime, by using different spin
states of erbium [Pat21].

In the second geometry, an array of quasi-2D planes, we started to explore the physics of
dipolar gases in reduced dimensions. In this system, we exploit an attractive onsite dipolar
interaction to create a single occupied layer. The possibility to realize quasi-2D states can
be exploited to prepare novel supersolid states or to study the effect that DDI plays in BKT
physics [Bom19].

Another interesting open direction is the investigation of the excitation spectrum of a dipolar
BEC in the macro-droplet regime [Pal20, Pal22]. This is a self-bound state, that is dense
but experiences strong repulsion at short wavelengths. In this state, a novel multiband
response of the dynamic structure factor is predicted. There are also many fundamental
open questions on the speed of sound and the critical velocities in this system. We aim to
address these questions in future publications.

Supersolidity, droplets, and solitons are fascinating phases, but dipolar gases offer even more
interesting research directions. For example, using a Fermi gas of 167Er, it is possible to
explore the BEC to BCS crossover [Mat14].

We recently characterized also a narrow inner-shell orbital transition at 1299 nm [Pat21].
Since it is directly in the telecommunication-wavelength O-band, the transition at 1299 nm
is an interesting candidate for quantum information systems [Pat21].

During the writing of this thesis, a new objective was implemented in the experiment. This
tool gives us the possibility to image and manipulate our sample with sub-micron resolution.
Adding a DMD setup to the imaging setup would allow us to further project arbitrary
potentials, such as ring potentials, on our samples.
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We realize a two-component dipolar Fermi gas with tunable interactions, using erbium atoms.
Employing a lattice-protection technique, we selectively prepare deeply degenerate mixtures of the
two lowest spin states and perform high-resolution Feshbach spectroscopy in an optical dipole trap. We
identify a comparatively broad Feshbach resonance and map the interspin scattering length in its vicinity.
The Fermi mixture shows a remarkable collisional stability in the strongly interacting regime, providing a
first step towards studies of superfluid pairing, crossing from Cooper pairs to bound molecules, in presence
of dipole-dipole interactions.

DOI: 10.1103/PhysRevLett.121.093602

The ability to prepare dipolar quantum gases of magnetic
atoms [1–6] has enabled fascinating, yet unexpected, obser-
vations, emerging from the long-range and anisotropic
character of the dipole-dipole interaction (DDI) among
particles. In bosonic systems with dominant DDI, this
includes d-wave-patterned collapse [7], droplet stabilization
[8–10], and roton quasiparticles [11]. With fermions, many-
bodydipolar phenomena have been investigated only in spin-
polarized systems. Here, the DDI competes with the Pauli
pressure, rendering dipolar effectsmuchmore subtle, as, e.g.,
their influence on the shape of the Fermi surface [12].
Magnetic atoms further realize high-spin systems; e.g.,

fermionic Er has 20 available spin states in the lowest
hyperfine manifold. In particular, bosonic dipolar spinor
gases have been investigated in remarkable experiments
with magnetic Cr atoms [13–16], whereas the fermionic
counterpart remains rather unexplored in the quantum
regime. Scattering experiments with fermionic Dy mixtures
slightly above quantum degeneracy showed a large colli-
sional stability against inelastic dipolar relaxation [17],
enabling, e.g., the production of long-lived spin-orbit-
coupled gases via Raman excitations [18].
As yet, the realization of a two-component dipolar Fermi

mixturewith tunable interactions has remained elusive. Such
a system can disclose fascinating phenomena, from aniso-
tropic quantum phases of matter, e.g., anisotropic Fermi
liquids and superfluid pairing [19,20], to dipolar magnetism
[21], but also extended Fermi-Hubbard models with off-site
interactions [22]. Fermionic Er and Dy are very promising
candidates for such studies, given their large magnetic
moment. However, the large density of Feshbach resonances
(FRs) even in spin-polarized gases [23–25] raises the
question of whether stable fermionic quantummixtures with
tunable interactions can be realized with lanthanides.
We here report on a powerful platform to produce a

two-component dipolar Fermi gas of pseudospin 1=2 and

demonstrate tunability of the interspin interactions. By
using highly magnetic 167Er atoms and a three-dimensional
(3D) optical lattice as a tool for spin preparation, we
perform high-resolution Feshbach spectroscopy and unam-
biguously identify the spin nature of the different FRs.
Among the resonances, we find a well-isolated and com-
paratively broad interspin FR and precisely measure the
interspin scattering length. Our Fermi mixture reveals a
remarkable collisional stability in the strongly interacting
regime.
Achieving a deterministic preparation of a spin-1=2

mixture and a precise control over the interspin interactions
in highly magnetic lanthanide atoms challenges experi-
mental schemes. Indeed, the enormous density of FRs can
cause collisional losses and severe heating, limiting the
production and preparation of deeply degenerate mixtures
at arbitrary magnetic fields (B), where hundreds of FRs
might need to be crossed (see, e.g., [18]). Moreover, state-
selective preparation of a spin-1=2 system typically
requires large B values for which the quadratic Zeeman
effect lifts the degeneracy on the Zeeman splitting among
consecutive sublevels [17,26].
For these reasons, we establish a technique for colli-

sional protection during the spin preparation (see Fig. 1). In
a nutshell, the key production steps are as follows. We
produce a spin-polarized degenerate Fermi gas (DFG) in an
optical dipole trap (ODT) at low B [1 in Fig. 1(a)] and load
the atoms into the lowest band of a deep 3D optical lattice,
which acts as a collisional shield [2 in Fig. 1(a)] [27,28].
We then sweep to high B for spin preparation and perform
radio-frequency (rf) transfer [3 in Fig. 1(a)], sweep to the
desired B, and eventually melt the lattice [4 in Fig. 1(a)].
Experimentally, we prepare a spin-polarized DFG of

167Er atoms in a crossed-beam ODT [5,29] [1 in Fig. 1(a)].
All fermions occupy the lowest Zeeman state j↓i≡ jF ¼
19=2; mF ¼ −19=2i of the ground-state manifold. Here,
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F is the total spin quantum number and mF its projection
along the quantization axis. A homogeneous magnetic field
of B ¼ 0.6 G is applied along the vertical z direction to
define the quantization axis and to maintain spin polariza-
tion. The sample typically contains N ¼ 2.4 × 104 atoms at
about T ¼ 0.25TF. Note that the ODT is shaped to optimize
single-band loading of the optical lattice and yields EF ¼
kB × TF ¼ kB × 170 nK ¼ h × 3.6 kHz (see Supplemental
Material [29]). Here, TF is the Fermi temperature, h is the
Planck constant, and kB is the Boltzmann constant.
In the next step, we transfer the spin-polarized DFG into

a 3D optical lattice [2 in Fig. 1(a)]. Our lattice has a cuboid
geometry with lattice spacings ðdx; dy; dzÞ ¼ ð266; 266;
532Þ nm along the three orthogonal directions [29,37].
In order to pin the atoms in a one-fermion-per-lattice-site
configuration (unit filling), we use large lattice depths of
about ðsx; sy; szÞ ¼ ð20; 20; 80Þ, where si with i ∈ fx; y; zg
is given in units of the respective recoil energies, ER;x;y ¼
h × 4.2 kHz and ER;z ¼ h × 1.05 kHz. After lattice load-
ing, we obtain a single-component fermionic band insulator
(BI) of about 2.2 × 104 j↓i atoms. By melting the lattice
and reloading the fermions into the ODT, we measure T ≲
0.3TF with N ¼ 2.1 × 104 (TF ≈ 160 nK) and extract a
heating rate in the lattice as low as _T ¼ 0.03 TF=s.
Our system is well described by a single-band extended

Fermi-Hubbard model [22] with residual tunneling rates of
Jx;y ¼ h × 10.5 Hz and Jz ¼ h × 0.001 Hz and nearest-
neighbor interactions on the order of h × 50 Hz [37]. We
confirm the single-band population by performing standard

band-mapping measurements [38]. In the horizontal (xy)
plane, we do not resolve higher-band occupation [see
Fig. 1(b) and Supplemental Material [29]). Along the z
axis, we detect a residual < 5% population in the first
excited band, resulting from the fact that EF > ER;z [39].
Because of the Pauli exclusion principle, doubly occupied
sites (doublons) in a single band are strictly forbidden for
identical particles (j↓i).
In the BI regime, the lattice is expected to provide a strong

collisional protection to the particles. As a first application,
we use the lattice-protection technique to realize a spinor
Fermi gas with pseudospin 1=2 (j↓i–j↑i), with j↑i≡ jF ¼
19=2; mF ¼ −17=2i [3 in Fig. 1(a)]. Experimentally, we
start with a j↓i BI atB ¼ 0.6 G and then rampB in 40 ms to
a value of about 40 G, for which the quadratic Zeeman effect
in 167Er is large enough to lift the degenerate coupling of the
individual spin levels [29]. After letting the field stabilize for
120ms, we use a standard rf-sweep technique to transfer part
of the atoms into the j↑i state. By tuning the rf power, we can
precisely control the population imbalance, δ ¼ ðN↓ − N↑Þ=
N, in the mixture, with N↓ (N↑) the number of atoms in j↓i
(j↑i). Figure 1(c) shows exemplary spin-resolved absorption
images of j↓i–j↑i mixtures for various δ after B is swept
back to low values. We typically record N ¼ N↓ þ N↑ ¼
1.8 × 104 and T ≈ 50 nK after melting the lattice down [4 in
Fig. 1(a)]. For comparison, similar measurements in absence
of the lattice clearly show a much lower atom number of
N ¼ 0.6 × 104, proving the strength of our lattice-protection
scheme to circumvent losses when cruising through the
ultradense Feshbach spectrum [18,23].
Figure 2 shows the high collisional stability of the lattice-

confined spin mixture. In particular, we probe N↓;↑ as a
function of the holding time in the lattice [see Fig. 2(a)].
From an exponential fit to the data, we extract long
lifetimes of τ↓ ¼ 31ð3Þ s and τ↑ ¼ 12.2ð7Þ s. The mea-
surements are carried out at B ¼ 3.99 G, where no FRs
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FIG. 1. Spin-1=2 dipolar fermions in a 3D optical lattice.
(a) Sketch of the four key stages of our preparation scheme;
see text. (b) Band population in the horizontal xy plane, obtained
by averaging 50 absorption images for a 12 ms time of flight
(TOF). The red arrows indicate the first Brillouin zone of the
lattice. (c) Spin-resolved band-mapping images after 9 ms of TOF
in the vertical zx̃ plane, where x̃ accounts for the angle between
the imaging beam and the y axis of the lattice, for population
imbalances δ ¼ 1 (left), 0.02 (middle), and −0.94 (right). The
images are averages of about 20 absorption pictures. The spin
states are separated along the z direction by a Stern-Gerlach
technique.
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FIG. 2. Spin mixture of dipolar 167Er in a 3D lattice. (a) Lifetime
measurements for spin-polarized samples of j↓i (squares) with
δ ¼ 1 and of j↑i (circles) with δ ¼ −0.92 at B ¼ 3.99 G and their
respective exponential decay (solid lines). (b) Lifetimes as a
function of δ. Constant fits extract mean lifetimes across δ of
τ̄↓ ¼ 29.9ð3Þ s and τ̄↑ ¼ 11.8ð7Þ s. All error bars indicate the
statistical uncertainty.
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occur (see Supplemental Material [29]). Interestingly,
within our error bars, we find no dependence of the lifetime
of each spin state on the population in the other state; they
remain long regardless of δ [see Fig. 2(b)].
We note that, although very long for our purpose, we

always record shorter lifetimes for a j↑i BI with respect to
the ones measured for a j↓i BI. Differently from the j↓i
case, two-body relaxation processes for j↑i are allowed. At
our magnetic fields, this process converts Zeeman energy
into a large enough kinetic energy to let the atoms escape
from the lattice [13,40] and requires the particles to collide
at short distance (on site) [17,41]. In the spin-polarized
cases (e.g., δ ¼ −1; j↑i), double occupancy necessarily
involves population in higher bands since the Pauli exclu-
sion principle forbids doublons in the lowest band. In our
system, a continuous transfer of a small fraction of atoms
into higher bands might be driven by intensity and
frequency noise of the lattice beams [28]. In the case of
j↑i, this would lead to subsequent fast relaxation and
justify the observed difference in the lifetimes.
With our spin-preparation method, we are now able to

conduct high-precision Feshbach spectroscopy in an ODT
[4 in Fig. 1(a)] in search of interspin loss features. For this,
we first prepare the spin-1=2 mixture in a deep lattice at
the desired B value. We then transfer the mixture back into
the ODT, hold the atoms for 500 ms, and finally measure
the spin populations. Figure 3 exemplifies the high-
precision Feshbach spectroscopy for three values of δwithin
a narrowmagnetic field range fromB ¼ 550 to 750mGwith
a resolution of 1 mG. A lower-resolution and larger-range
scan is shown in the Supplemental Material [29].
As expected [23,24], the atom-number trace as a function

of B shows a high density of resonant loss features on top of
a constant background. By controlling δ, we are able to
distinguish the spin nature of each of the observed FRs.
In the excerpt shown in Fig. 3, we identify three narrow
homospin FRs in a pure j↓i sample [Fig. 3(a)] and four in a
quasipure j↑i sample [Fig. 3(b)]. In the spin-polarized

cases, all FRs exhibit widths of the order of our magnetic
field stability of ≈1 mG. Thanks to our lattice-preparation
technique, the shape and thewidth of the FRs are not affected
by the magnetic field ramps, namely, we do not observe
neither broadening nor fictitious asymmetry in the loss
peaks. For the 50%–50% spin mixture (δ ¼ 0), we observe
five additional interspin FRs [Fig. 3(c)], where atoms in the
two spin states are simultaneously lost. Because of the
complicated scattering behavior of Er, standard coupled-
channel methods to assign the leading partial-wave character
of the FRs are currently not available [42]. However, the
width of the FRs can give indications on the strength of
the coupling between open and closed channels [43].
Among the observed interspin FRs, the one at about

0.68 G stands out from the forest of narrow FRs. This FR is
almost 2 orders of magnitude broader, making it a promising
candidate for Fermi-gas experiments in the strongly interact-
ing regime. We further investigate this FR by performing
modulation spectroscopy on the lattice-confined spin-1=2
mixture [3 in Fig. 1(a)] to extract the interspin on-site
interaction energy, U↓↑ ¼ Uc þUdd, given by the sum of
the interspin contact interaction Uc and the DDI Udd [37].
Thanks to the precise knowledge of Udd and to its angle
dependence, we are able to directly extract the interspin
scattering length,a↓↑ ∝ Uc ¼ U↓↑ −Udd, both in amplitude
and in sign (for details, see Supplemental Material [29]).
Figure 4(a) summarizes our results, showing the tunability

of a↓↑ from positive to negative values across the interspin
FR. As a first estimate of the B-to-a↓↑ conversion, we use
the simple single-channel formula, leading to a↓↑ðBÞ ¼
abgð1 − Δ=ðB − B0Þ − Δ0=ðB − B0

0ÞÞ [43]. From the fit to
the data, we extract the background scattering length
abg ¼ 91ð8Þa0, the position of the comparatively broad
FR B0 ¼ 687ð1Þ mG, and its width Δ ¼ 58ð6Þ mG. Note
that our fitting function also accounts for a nearby interspin
FR at B0

0 ¼ 480 mG (out of range of Figs. 3 and 4) of
width Δ0 ¼ 29ð4Þ mG, whereas narrower interspin FRs are
neglected. Based on the extracted values, we can estimate an
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FIG. 3. High-resolution Feshbach spectroscopy for three different population imbalances in an ODT (illustrations): atoms in j↓i
(squares) and j↑i (circles) for δ ¼ 1 (a), −0.6 (b), and 0 (c) as a function of B. The determined width and spin nature of the FRs are
indicated by the blue (j↓i), orange (j↑i), and green (j↓i–j↑i) shaded regions. Each data point is the mean of 2–4 repetitions.
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order of magnitude for the effective range of the FR, R� ¼
ℏ2=ðmErΔabgδμ) [43]. Here, mEr is the mass of 167Er. The
differential magnetic moment between the open and closed
channel δμ is not known for the considered FR. However,
taking δμ ¼ 3μB, which is the typical value measured on
bosonic Er2 [42], we estimate R� on the order of 1000a0.
With this order of magnitude, our typical two-component
Fermi gases verify 1=kFR� ≳ 1, with kF being the Fermi
wave vector [29]. This identifies the intermediate strength of
the FR [44], for which the gas is expected to remain strongly
interacting at unitarity [45,46].
For strongly interacting alkali Fermi gases, the large

collisional stability in two-component mixtures has been
essential for observing the crossover from a superfluid of
delocalized pairs along the Bardeen-Cooper-Schrieffer
(BCS) mechanism to a Bose-Einstein condensate (BEC)

of bound molecules [47]. As a direct consequence of the
Pauli principle, three-body recombination occurs primarily
on the repulsive (BEC) side of broad s-wave FRs, where a
weakly bound molecular level exists [48], whereas on the
attractive (BCS) side, large scattering lengths coexist with a
remarkable collisional stability [49–52]. Such an asymme-
try in the scattering behavior is identified as an essential
attribute of BEC-BCS physics.
We investigate this aspect in a second set of experiments.

We prepare an equally populated spin mixture (δ ¼ 0) in an
ODT [4 in Fig. 1(a)] and probe the time evolution of the
spin population as a function of the holding time in the
trap for various B across the FR. Exemplary decay curves
are shown in Figs. 4(b) and 4(c). On the BEC side, at
a↓↑ ¼ 880ð140Þ a0, we observe a fast decay of both j↑i
and j↓i atoms [Fig. 4(b)]. A simple exponential fit to the
data gives lifetimes of τ1=e ≈ 150 ms. In contrast, on the
BCS side at a↓↑ ¼ −1500ð500Þ a0 [Fig. 4(d)], the spin
mixture shows a large collisional stability with lifetimes
exceeding τ1=e ¼ 1200 ms [Fig. 4(c)].
To get deeper insights, we systematically study the initial

decay rate _N=N0 as a function of B. We determine the rates
by using a linear fit to the data for the initial time evolution.
Figure 4(d) summarizes our results, plotted in terms of the
dimensionless coupling constant 1=ðkFa↓↑Þ. We observe
an asymmetry of the loss rate curve, indicating that the
Fermi mixture is remarkably stable in the unitary and
strongly attractive regime. We note that both the qualitative
shape and the quantitative values of the loss rates in 167Er
show strong similarities to the ones measured in 40K [51].
The existence of a comparatively broad interspin FR and

our demonstration of the interaction tuning across this
resonance make fermionic Er gases a promising system
for accessing BEC-BCS crossover physics within a distinct
scattering scenario. Indeed, our mixture adds both the DDI
and an intermediate effective range in the short-range
scattering compared to the alkali cases [46,47], paving the
way for studying exotic Cooper pairs and molecular BECs
[19,44,53] and calling for new theory developments [54].
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FIG. 4. Interspin scattering length and collisional behavior of
the strongly interacting Fermi mixture (a) a↓↑ extracted from
modulation spectroscopy in the lattice. Error bars are smaller than
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(d) Initial decay rate _N=N0 of the normalized atom numbers as a
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Spin-polarized degenerate Fermi gases

Our experimental protocol for the preparation of
deeply degenerate Fermi gases (dFgs) of 167Er follows
the one described in ref. [1]. The experiment starts with
a narrow-line magneto-optical trap operated at 583 nm to
prepare spin-polarized 167Er atoms with N = 1.2 × 107

atoms and T ≈ 10µK in the lowest hyperfine sublevel
|F = 19/2,mF = –19/2〉, where F is the total angu-
lar momentum quantum number and mF is its projec-
tion along the quantization axis. The atoms are then
transferred to a horizontal optical dipole trap (ODT)
formed by a laser beam at 1064 nm. The aspect ratio
AR = w⊥/wz between the horizontal, w⊥, and verti-
cal, wz, waists of this beam can be tuned from 1.6 to
15 via a time-averaging potential technique [2], which al-
lows to reach a good spatial mode overlap between the
atomic cloud and the ODT. Subsequentially the atomic
cloud is compressed by reducing the AR and transferred
to a tight ODT created by a laser beam at 1570 nm with
a waist of about 15µm, and counterpropagating to the
1064 nm-beam such that their focii overlap. At this stage
we typically have 1× 106 atoms. During the evaporation
procedure the atoms are further confined by an addi-
tionnal ODT at 1570 nm, formed by a beam propagating
vertically with a waist of about 32µm. The crossed ODT
at 1570 nm is later denoted ODT1570.

Following our previous work of ref. [1], we perform
evaporative cooling based on elastic dipolar scattering
among identical fermions. Such a cooling scheme has
been proven to be very efficient to produce samples in
the deeply quantum degenerate regime [1, 3]. At the
end of the evaporation, the trap frequencies in ODT1570

are (ν⊥, ν‖, νz) = (286(3), 85(1), 255(3)) Hz with ‖ (⊥)
corresponding to the axis along (perpendicular to) the
horizontal ODT beam and z indicating the axis of grav-
ity. We typically obtain spin-polarized dFgs with up to
N = 6×104 atoms and temperatures of T ≤ 0.15TF, with
TF being the Fermi temperature corresponding to the
Fermi energy EF = kBTF = hν̄(6N)1/3, where h is the

Planck constant, ν̄ =
(
ν⊥ν‖νz

)1/3
the geometric mean

of the trap frequencies and N the atom number. At this
stage the Fermi energy is EF = kB×630 nK = h×13 kHz.

During the whole evaporation, the magnetic field has a
value of B = 0.6 G and is oriented along z, which sets
the quantization axis of the atomic dipoles. Here and in
the following, N and T/TF are estimated from polylog-
arithmic fits to the absorption images of the dFGs after
12 ms of time-of-flight (ToF) using the horizontal imaging
setup.

Preparation for lattice loading

In deeply dFgs, the atoms fill the Fermi sea up to
the Fermi energy, EF . Hence, the number of populated
bands, when the atoms are loaded to an optical lattice,
crucially depends on the initial value of EF . In first ap-
proximation, EF can be compared to the lattice recoil
energy Erec = h2/(2mErλ

2), with mEr being the mass of
167Er and λ the lattice wavelength. In particular, during
the initial increase of the lattice potential higher bands
become populated if EF > Erec [4].

To minimize the occupation of higher bands due to
the loading procedure we reduce the Fermi energy of
our sample. To this aim, we transfer the atoms back to
a crossed ODT operated at 1064 nm (ODT1064), within
510 ms. Here, the dynamically adjustable AR of the hori-
zontal beam allows a convenient control on ν̄ (see section
above). We optimize the ODT parameters by lowering
ν̄ and N while keeping a low temperature of the sample.
The best conditions for subsequent lattice loading are
reached for (ν⊥, ν‖, νz) = (63(1), 36(2), 137(1)) Hz and
N = 2.4 × 104 atoms with T ≤ 0.3TF, corresponding to
a Fermi energy EF = kB × 170 nK = h × 3.6 kHz. We
note that for lower νz atoms get lost due to gravity.

Three-dimensional optical lattice and its loading

The three-dimensional (3D) optical lattice in our ex-
periment is created by two retro-reflected 532 nm laser
beams along the x- and y-axis and one retro-reflected
1064 nm vertical laser beam along the z axis; see Fig. S1.
The lattice spacings are dx,y = 266 nm along the hor-
izontal xy-plane and dz = 532 nm along the vertical
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z-axis [5]. With the available power, we reach maxi-
mum lattice depths of (sx, sy, sz) = (25, 25, 120), where
si with i ∈ {x, y, z} is given in units of the respec-
tive recoil energies, ER;x,y = h × 4.2 kHz and ER;z =
h × 1.05 kHz. Typical lattice depths used in the ex-
periment are (sx, sy, sz) = (20, 20, 80) corresponding to
band gaps of h× 32.8 kHz along x and y and h× 17.7 kHz
along z.

After preparation and transfer to the ODT1064, we adi-
abatically load the spin-polarized dFg into the 3D lattice
by increasing the lattice-beam intensities exponentially
in 150 ms to the final values. Subsequently, the ODT
beams are switched off in 10 ms and we additionally hold
the atoms for 500 ms before applying our spin prepara-
tion scheme. This holdtime enables to remove most of the
residual atoms that have been pushed to higher bands of
the optical lattice by the Fermi pressure, through their
natural faster decay. We note that when the atoms are
loaded directly from ODT1570 we find up to 25 % of popu-
lation in higher bands, which in this case get strongly de-
populated within 500 ms. Despite our most careful load-
ing procedure and our holdtime, we measure that up to
5 % of the atoms can still populate the higher band of
the vertical lattice; see main manuscript (Note that the
higher bands along z are the most tightly trapped within
our lattice geometry).

Higher-band populations

To access the band population we perform band-
mapping measurements. Here, we decrease all lattice
potential to zero within 1 ms, thus mapping the quasi-
momentum of the band to real momentum. We then
perform ToF absorption imaging, which thus probes the
population of the different bands in directions transverse
to the imaging axis. We note that, the edges of the low-
est band can be smeared out because of the finite width
of the in-situ cloud and due to an imperfect adiabatic
switch-off of the lattice potentials [6], limiting the ac-
curacy of our determination. In our setup, we obtain
our best estimate of the remaining higher band popu-
lations by comparing the absorption images to the ex-
pected profiles computed from the first Brillouin zone.
In the z-direction, we observe a very small population
in higher bands, which we quantitatively estimate using
the horizontal imaging setup. Here, we additionally take
advantage of the observed structure of the higher band
population, which systematically appears below the low-
est band (along the gravity axis). This might be due to a
combined effect of residual magnetic gradient and grav-
ity. We use this behavior to our advantage and extract
the population of the higher band in z from the top-
bottom asymmetry of the band-mapping images. In the
xy-directions, the estimate of the higher band population
is more subtle in particular because of the non-orthogonal

yx

z

d
y dx

d z

FIG. S1. Sketch of our lattice geometry. The coordinate
system {x, y, z} and the lattice constants dx, dy, and dz are
indicated.

configuration between the imaging and horizontal lattice
axes. To the best of our detection sensitivity, we do not
observe any population in higher-bands along these axes.
Based on the higher recoil energies in these directions,
we physically expect a lower initial population of those
bands than along z, as discussed above. In addition, be-
cause of the lower lattice depths, we expect a faster loss
of their population.

Zeeman energy for fermionic Er

Fermionic Er exhibits a hyperfine structure resulting
from the coupling of its nuclear spin I, whose quantum
number is I = 7/2, with the total electronic angular
momentum J, which in the ground state of Er has for
quantum number J = 6. The total angular momen-
tum reads F = J + I. In the lowest hyperfine mani-
fold (F = 19/2) there are 2F + 1 = 20 sublevels which
can be differentiated by the eigenvalues of the projec-
tion of F on the quantization axis, corresponding to the
quantum number mF . Because, in our experiment, an
external magnetic field B is always applied, the degen-
eracy of the sublevels is lifted by the interaction of B
with the different angular momenta. In our description,
the quantization axis is chosen to be parallel to B, and
the mF sublevels are then denoted magnetic states. In
the low B limit, the magnetic states are simply shifted
in energy along EmF

= mF gFµBB, corresponding to
a state dependent magnetic moment, µ = mF gFµB .
In Erbium, the absolute ground state has a magnetic
moment of µ = −6.982804µB , giving the Landé factor
gF = 0.735032 [7]. Here µB is the Bohr magneton.

In a more general way, the atomic energy levels in a
uniform B-field can be calculated via an exact diagonal-
ization of the atomic Hamiltonian [8]. In Fig. S2 we plot
the energy levels of the lowest hyperfine manifold as a
function of the magnetic field computed in such a way.
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FIG. S2. Zeeman energy for the magnetic substates in the
|F = 19/2〉 hyperfine manifold. For this work the energy
splitting of the lowest three spin states |–19/2〉 ≡ |↓ 〉 (blue
line), |–17/2〉 ≡ |↑ 〉 (orange line) and |–15/2〉 (red line) is of
most relevance. Higher spin states are visualized by grey lines.
The linear Zeeman effect dominates the energy evolution such
that ∆1 ≈ ∆2 ≈ qli while the quadratic Zeeman effect is
evident in the differential splitting ∆1−∆2 (inset).

The dominant trend evidences the linear dependence dis-
cussed above in the low B regime. However, at large
enough B, deviations from this simple picture appear due
to the Paschen-Back effect, as J and I start to decouple.
In a perturbative description, this can be accounted via a
quadratic correction to the Zeeman energies which writes
EmF

− qlimF = qqu(m2
F − F 2) with qli = gFµBB and

qqu ∝ B2. The deviation from the linear Zeeman energy
becomes evident when considering the differential split-
ting ∆EZ(mF ) = (EmF

−EmF+1)− (EmF+1 −EmF+2),
as the linear Zeeman effect qlimF cancels out; see inset
of Fig. S2. In the folowing we define ∆EZ = ∆EZ(mF =
−19/2), which is the most relevant quantity for the cur-
rent study, as restricted to mF = −19/2 and −17/2.

Preparation of a spin mixture in the lattice

To achieve a deterministic spin preparation of the two
lowest spin states we typically use a large enough mag-
netic field of B = 40.51 G for which the differential Zee-
man splitting ∆EZ = 42.6 kHz is larger than the fluctu-
ations of the Zeeman energies coming from the magnetic
field noise, corresponding to≈ 20 kHz at this field. In this
way, the spin-spin coupling induced by a small amplitude
modulation of the magnetic field in the radio-frequency
(rf) domain can be restricted to the subspace formed by
the lowest two spin states mF = −19/2 and −17/2. To
couple the two hyperfine sub-states we apply a rf-sweep
by chirping the rf-frequency continuously from a value of

(ν? +30 kHz) to (ν?−30 kHz) within about 10 ms, where
hν? matches the energy difference E−19/2 − E−17/2 (∆1
in Fig. S2). We can prepare a well-reproducible mixture
of |↓ 〉 and |↑ 〉 without populating the next higher spin
state. The population imbalance δ between the two spin
states can be freely controlled by varying the power of the
rf signal. In particular, also almost all the atoms can be
transferred to |↑ 〉 reaching up to δ = −0.94 (see Fig. 1(c)
of the main manuscript). We note that, while our prepa-
ration technique in the lattice initially leads to a coherent
superposition of the two spin states, additional measure-
ments suggest a fast decoherence, leading to a projection
of pure states on the individual lattice sites for the ex-
perimental relevant time scales. In particular, we observe
that coherently driven Rabi oscillations between the two
spin states quickly damp within a few ms.

To image the spin mixture, we perform spin-resolved
TOF absorption imaging using a Stern-Gerlach technique
with a 1-ms pulsed magnetic field gradient at the begin-
ning of the TOF. After an additional 7.2 ms of TOF,
the populations of each spin state are spatially separated
and we measure them by using the horizontal imaging
setup (Fig. 1(c)). N↓.↑ are then counted by integrating
the measured density distribution over well-defined re-
gions of interest.

Lifetime of the spin mixture in a deep lattice

To conduct a clean measurement of the collisional
properties of a spin mixture in the deep optical lattice
it is important to fulfill the following requirements: (i)
The spin mixture is in an insulating regime where the
formation of doublons is suppressed via sufficiently large
ratios of the onsite interspin interaction energy U↑↓ to the
tunneling rate J . This requires not only to use a deep lat-
tice potential but also to sit away from any Feshbach res-
onance (FR) so that U↑↓ is not resonantly modified and
has a value close to its background one. (ii) The Zeeman
energies are large and do not have an equidistant spacing
so that both magnetization changing and magnetization
conserving spin-exchange processes induced by the DDI
are energetically supressed [9–12].

Due to the high density of FRs (see next section and
Ref. [13]), the requirement (i) is not so straightforwardly
achieved in our fermionic erbium mixture. In this sys-
tem, to find a magnetic field value for which we sit stably
away from any FR is eased by a low technical magnetic-
field noise. Because of the different sets of coils used in
our experiment, the magnetic field noise is found to be
≈ 1 mG up to B = 5 G while it increases to ≈ 20 mG
when we go to higher B values. Hence, working at
B ≤ 5 G turns out to be more favorable in our setup.
On the other hand, the requirement (ii) is matched for
a sufficiently large magnetic field, where the quadratic
Zeeman effect (see Fig. S2) is strong enough to not be
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canceled by quadratic light shifts [14]. The best condi-
tions for meeting the requirements (i) and (ii) are found
at B = 3.99 G, which is used for the lifetime measure-
ments of Fig. 2. At this field, we have measured the on-
site interaction energy using a similar technique as for
Fig. 4(a) of the main text; see also below. The extracted
value of U↑↓ = h×2.43(2) kHz exceeds by far the relevant
tunneling rates Jx,y = h × 10.5 Hz so that it lies deeply
in the insulating regime. In addition, we note that no
spin-changing dynamics are observed from the measured
spin population.

We finally note that, for technical reasons, our setup
allows holding in the lattice up to 20 seconds. For longer
times, thermal effects in the high-power fiber start to pre-
vent us from properly stabilizing the output power for our
lattice. We avoid observation in this regime where the
lattice potential would not be properly controlled (which
may also lead to additional losses), as the allowed obser-
vation time is already very long for our purposes. This
restriction however limits the precision of our lifetime
measurements for the long lifetimes observed in our setup
and in particular for the longest-lived |↓ 〉 state.

State-resolved Feshbach spectroscopy

To identify the magnetic field regions where promising
interspin FRs occur, we first perform a rough Feshbach
scan in the 0 − 2 G region for different population im-
balances δ (Fig. S3). For this set of data we do not use
our lattice-protection technique. Instead, the spin prepa-
ration, the magnetic-field ramps, and the Feshbach spec-
troscopy are directly performed in the ODT. As expected,
without the lattice, the loss features present broadening
and asymmetric shapes due to the mere magnetic-field
sweeps (e. g. via losses occuring during the sweeps). Yet,
the most prominent features of the scattering physics can
be identified.

Using this technique, we perform three sets of mea-
surements, varying the composition of the mixture δ.
In a first set, we perform a Feshbach scan in a spin
polarized gas in ODT1570 (Fig. S3, upper panel). We
jump to the final magnetic field and hold for thold =
70 ms before TOF imaging. The trap frequencies are
(ν⊥, ν‖, νz) = (324(1), 147(5), 259(4)) Hz. The system
has an initial temperature of T = 0.18(1)TF. Simi-
lar to Ref. [13], we observe a high density of loss fea-
tures, which correspond to single-component (|↓ 〉) FRs
of high partial-wave character. In a second set of mea-
surements, we repeat the magnetic-field scan in an al-
most pure |↑ 〉 sample (Fig. S3, middle panel). Here, we
use a resonant rf-pulse at 0.99 G to prepare a mixture
with mainly |↑ 〉 atoms. Then we jump on a purely |↓ 〉
homo-spin FR located at 1.034 G to remove remaining
|↓ 〉 atoms. The measurement is performed in the more
shallow ODT1064 to prevent too strong interspecies losses

and thold = 500 ms. For this trap, the trap frequencies
are (ν⊥, ν‖, νz) = (39(1), 37(1), 145(3)) Hz and the initial
temperature is T = 0.35(1)TF. We find new FRs, which
mainly correspond to single-component |↑ 〉 FRs. In a
third set of measurements, we observe the loss features
for a spin mixture prepared at 0.58 G in the same trap as
for the pure |↓ 〉measurement with thold = 50 ms (Fig. S3,
lower panel). Here, the initial temperature is slightly in-
creased to T = 0.24(1)TF due to the spin mixing. The
individual homo-spin FRs are still visible while we also
find new interspin |↓ 〉–|↑ 〉 FRs.

We analyze the three sets of data to extract the spin
nature of the individual FRs. For several FRs, the en-
trance spin channel can be easily identified. In addition,
we also observe overlapping FRs. Here, an exact assign-
ment requires a high-resolution magnetic-field scan and
our lattice-protection technique; see main text. Among
the forest of FRs recorded in the two-component mixture,
we observe a promising interspin FR at about 700 mG,
which remains rather isolated from other homo-spin FRs;
see green shading in Fig. S3.

As a second step, we focus on the magnetic-field region
around 700 mG in which the promising interspin Fesh-
bach resonance has been identified and perform high-
resolution Feshbach spectroscopy, taking advantage of
the lattice-preparation scheme, as described in the main
text. The lattice-protection technique is very powerful in
removing technical broadening and artificial asymmetry
of the loss peaks, as it clearly appears from a comparison
between the atom-number traces recorded with ODT-
preparation (Fig. S3) and lattice-preparation schemes
(Fig. 3). We perform the measurements for Fig. 3 as fol-
lows. We prepare a spin mixture in the lattice at high
B as described above and sub-sequentially ramp the field
to the desired value within 10 ms. After letting the B-
field stabilize for about 100 ms, the dipole trap beams
are ramped up within 10 ms and we unload the atoms
from the lattice back into the ODT1064 within 150 ms.
At this stage, the sample contains N ≈ 1.6 × 104 atoms
at T ≈ 0.3TF, almost independent of δ, and the trap fre-
quencies are (ν⊥, ν‖, νz) = (111.6(2), 35(1), 169.4(6)) Hz.
We then record the spin population after a holding time
of 500 ms. For each magnetic field value, the measure-
ment is repeated between two to four times and the av-
erage is reported in Fig. 3.

For all the above described measurements, we note that
the observed atom losses can be mainly attributed to res-
onant three-body recombination collisions in the short-
range potential. Inelastic two-body losses driven by the
spin-non-conserving dipolar interactions are, in principle,
also energetically allowed since |↑ 〉 atoms are in an ex-
cited Zeeman state [15]. However, we do not expect this
process to be enhanced at resonance.
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Modulation spectroscopy with a fermionic spin
mixture in the lattice

To measure the scattering length between two spin
states of 167Er, we rely on a method similar to the
one that we have already successfully implemented with
168Er [5] and 166Er [2]. It is based on the measurement of
the onsite interaction energy of two atoms in a deep op-
tical lattice. Here, after preparing a spin mixture of |↓ 〉
and |↑ 〉 in the lattice we drive particle-hole excitations
of neighboring atoms by a resonant modulation of the
horizontal lattice depths sx,y. Note that for neighbor-
ing identical particles no single-band excitation will be
observed due to the Pauli exclusion principle and only
neighboring atoms in different spin states can be excited,
allowing to effectively only probe the interspin onsite in-
teraction U↓↑. In our experiment, we probe the doublon
creation via the resulting increase in atom loss. We spec-
ulate that onsite dipolar relaxation is responsible for the
observed loss [16]. We note that a distinct and convenient
method to measure double occupancies has been demon-
strated using the coupling to a third spin state [17]. Close
to a molecular state of the original doublon components,
the third spin state features a smaller interspin onsite
energy and can thus be used to detect an initial double
occupancy. Yet, such a method remains to be explored
in our system.

In our experiment, we typically modulate the lattice
depth for 1 s with a sine function with a peak-to-peak
amplitude of 30% and a frequency νmod. Maximum loss
occurs when νmod reaches the resonance condition νres =
U↓↑/h (see Fig. S4). Following our previous work [5], the
onsite energy U↓↑ consists out of two contributions: the
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FIG. S4. Exemplary modulation spectroscopy measurement
with a spin mixture of |↓ 〉 and |↑ 〉 in the deep lattice at
B = 650 mG. The resonance condition determines νres, which
is related to the onsite energy U↓↑ (cartoon).

contact interaction Uc

Uc =
4πh̄a↓↑
mEr

∫
dr |φ(r)|4 ,

and the DDI Udd

Udd =
µ0µ↓µ↑

4π

∫
dr

∫
dr′ |φ(r)|2 1− 3 cos2 θr−r′

|r− r′|3 |φ(r′)|2 .

Here, φ(r) denotes the onsite Wannier function, |r− r′| is
the interatomic distance and θr−r′ corresponds to the an-
gle between the polarization axis of the two dipoles with
respect to their interparticle axis. The contact part de-
pends on the interspin scattering length a↓↑, the reduced
Plank constant h̄, and the mass mEr of a 167Er atom,
while the DDI part is proportional to the vacuum perme-
ability µ0 and to the magnetic moments of the two spin
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states µ↓ and µ↑. The contributions of nearest-neighbor
interactions are minor and therefore neglected.

Both, the strength and the sign of Udd strongly depend
on the dipole orientation and the anisotropy of the onsite
Wannier function. As specified in our earlier work [5], we
define the aspect ratio, AR, associated to the Wannier
function by the ratio of the onsite harmonic oscillator
lengths perpendicular and in the xy-plane, AR = lz/lx,y.
Note that, in a deep lattice, the onsite harmonic oscillator

lengths match li = di/(πs
1/4
i ) for i ∈ {x, y, z}. For our

typical lattice parameters we find AR > 1 and hence Udd

can be tuned by rotating the atomic dipole. In particular,
Udd is negative (positive) for a dipole orientation out of
(in) the xy-plane.

In the experiment, we use both our precise control and
our exact knowledge of Udd to determine not only the am-
plitude but also the sign of the scattering length a↓↑. For
a given magnetic field and a given lattice configuration,
we repeat our modulation spectroscopy measurements for
two different dipole orientations: (i) when oriented along
z, we extract the total onsite energy |Uz

↓↑| while know-
ing the dipolar contribution Uz

dd, (ii) when oriented in
the xy-plane, we extract |Uxy

↓↑ | while knowing the dipo-

lar contribution Uxy
dd . This yields the two indepedent

and incommensurate relations: |Uz
↓↑| = |Uc + Uz

dd| and

|Uxy
↓↑ | = |Uc + Uxy

dd |. Their combination gives access to
both the magnitude and the sign of Uc, and thus of a↓↑
as reported in Fig. 4(a).

As a final test of our method we study the dependence
of the onsite energy as a function of the lattice depth sz
(Fig. S5). Here, we fix the magnetic field, oriented along
z, to 650 mG and vary the depth of the z lattice. We
repeat the modulation spectroscopy for different values
of sz and extract νres for each measurement. A compari-
son to our theoretical model with a↓↑ being the only free
parameter shows a good agreement, confirming the valid-
ity of our modulation spectroscopy technique. Here, the
fit gives a value for a↓↑ of 225(2) a0 matching the value
extracted from an independent analysis of the individual
lattice configurations as reported in Fig. 4(a) and giving
a↓↑ = 225(4) a0.

The data presented in Fig. 4(a) shows the mean of the
different experimental datasets, taken with different lat-
tice parameters, for a given magnetic field B. Table 1
summarizes all lattice parameters used in the experiment
as well as the expected values of Uc for a↓↑ = 100 a0,

denoted U
(100)
c , and of Uz

dd from our theoretical model.
Uc being proportional to a↓↑ and Udd depending only
on the lattice parameters, the interspin scattering length
can be evaluated from a given measurement of U↓↑ via

a↓↑/a0 = (U↓↑ − Uz
dd)× 100/U

(100)
c .
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4.5

5.0

5.5

6.0

ν re
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H

z)

sz (ER,z)

FIG. S5. Modulation resonance νres as a function of the
vertical lattice power sz for sx,y = 20 at B = 650 mG. The
solid line shows a fit with our theory to extract the scattering
length a↓↑. The shaded region accounts for the systematic
uncertainty of the scattering length of ±4 a0 at 0.65 G, which
results from our magnetic field fluctuations of ±1 mG.

(sx, sy, sz) AR U
(100)
c /h (Hz) Uz

dd/h (Hz)

(20, 20, 40) 1.68 2029 −441

(20, 20, 60) 1.52 2263 −396

(20, 20, 80) 1.41 2443 −350

(20, 20, 100) 1.34 2590 −307

(20, 20, 120) 1.28 2717 −265

(15, 15, 80) 1.32 2068 −223

(22, 22, 80) 1.45 2578 −399

TABLE I. Lattice parameters for the determination of a↓↑
(Fig. 4(a)). The lattice depths (sx, sy, sz) define the onsite
Wannier function AR. From our theoretical model we eval-
uate the onsite energy contributions U

(100)
c and Uz

dd for an
interspin scattering length of a↓↑ = 100 a0. Here, the dipoles
are oriented along z. This values are used to extract the inter-
spin scattering length from the measured total onsite energy
U↓↑.

Scattering-length tunability and magnetic-field
stability.

A precise control of the magnetic-field value is crucial
for tuning the interaction strength in the spin mixture.
For the FR of Fig. 4(a), a width of ∆ = 58(6) mG and rel-
ative strength abg/R

∗ = 0.1 have been estimated. Hence,
reaching a↓↑(B) = R∗ requires to sit ≈ 6 mG away from
the resonance pole. Based on an rf-spectroscopy calibra-
tion scheme, an accuracy of the order of 100µG and a
stability of ≈ 1mG on the magnetic-field value are esti-
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mated, corresponding to a relative stability of 10−3 at
the resonance position B0 = 687 mG. Note that in alkali
Fermi experiments, for which B0 is typically 3 orders of
magnitude larger, a much larger relative stability of 10−5

is usually required even if the FR is effectively broader.

Loss spectroscopy in the ODT at the interspin FR

For the measurements of the collisional properties of
the fermionic spin mixture in the vicinity of the com-
paratively broad interspin FR (see Fig. 4(b-d)), we ap-
ply the following experimental procedure. We prepare
a spin mixture with δ = 0 in the deep 3D lattice fol-
lowing the scheme detailed above, that is applying a
RF-sweep at large B. After the application of the RF-
sweep, we ramp the magnetic-field value to an inter-
mediate lower value B = 3.99 G in 100 ms. We then
jump with the magnetic field from the later intermedi-
ate value to the desired final value and let it stabilize
for 10 ms. Finally, we ramp up the ODT1064 beams
in 10 ms, melt the lattice down in 20 ms. This shorter
timescale for the lattice rampdown (compared, e. g. , to
the Feshbach spectroscopy measurements, see above) is
chosen to avoid significant losses to happen already at
this stage. The final trap frequencies in the ODT1064

are (ν⊥, ν‖, νz) = (111.6(2), 35(1), 169.4(6)) Hz. For this
trap, the typical atom numbers recorded (see Fig. 4(b-
c)) correspond to the Fermi energy EF ≈ kB × 150 nK
for each spin component, which in turn gives a Fermi
wave vector kF ≈

√
2mErEF/h̄ = 1 × 107 m−1. We then

hold the two-component mixture in the ODT1064 for a
variable holding time, t, at the selected B-field and ul-
timately record the spin populations via Stern-Gerlach
imaging.

We record the atom number decay with t for various
magnetic fields B across the FR. For each B and each
spin component, we extract an initial decay rate Ṅ/N0

by fitting a linear-decay function to the recorded atom
number N , normalized to its initial value N0, as a func-
tion of t. We fit all data for which the atom number stays
above a threshold of 75% of N0. We checked that the ex-
tracted values of Ṅ/N0 do not change significantly when

varying this threshold between 65 − 85%. An analysis
of the full data using exponential fits also yields similar
decay rate values.
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We present an experimental and theoretical study of the response of a dipolar supersolid to a Bragg excitation
at high-energy defined by the impulse approximation regime. We experimentally observe a continuous reduction
of the response when tuning the contact interaction from an ordinary Bose-Einstein condensate to a supersolid
state and ultimately to an incoherent array of droplets. Already in the supersolid regime, the observed reduction
is faster than the one theoretically predicted by the Bogoliubov–de Gennes theory. By comparing experiments
and theories, we are able to attribute this discrepancy to the presence of coherent phase dynamics induced by the
crossing of the phase transition. The phase variations are found to change character along the phase diagram and
become predominantly incoherent only when reaching the incoherent-droplet regime.

DOI: 10.1103/PhysRevA.104.L011302

Recently, supersolid states have been realized in laborato-
ries using ultracold quantum gases of dipolar atoms [1–3].
Predicted more than half a century ago [4–7] and long
searched for in helium [8], this intriguing phase of matter
spontaneously breaks two symmetries, namely the transla-
tional and the gauge symmetry. The breaking of the former
one gives rise to a periodic order in space with the system
ground state developing a density modulation, recalling a
crystalline structure, whereas the breaking of the gauge sym-
metry introduces a superfluid flow of particles.

The supersolid phase (SSP) transition is typically con-
trolled by the interaction. By varying its strength, a quantum
system may pass from an unmodulated superfluid to a fully
localized crystal state of insulating droplets (ID). Between
these two extremes, the system is supersolid, showing a co-
existence of these two apparently antithetical orders. The
interplay between localization and superfluidity has raised
lively debates [4–7]. In a seminal work, Leggett derived an
upper-bound relation for the superfluid fraction in a super-
solid [9], which directly connects the loss of superfluidity
with the increase of localization, the latter being quantified in
terms of a modulation contrast. Importantly, Leggett’s famous
formula is valid at equilibrium and requires the macroscopic
phase of the quantum system to be stationary.

*Author to whom correspondence and requests for materials should
be addressed: Francesca.ferlaino@uibk.ac.at

However, in experiments, a common path to create dipo-
lar supersolids relies on interaction tuning [1–3,10–13]. The
corresponding dynamical crossing of the phase transition may
introduce excitations, which, on the one hand, naturally ques-
tions the applicability of equilibrium theories. On the other
hand, excitations typically entail phase variations, raising in-
terest in understanding their role and impact on the system
behavior, calling for the development of theoretical models
accounting for out-of-equilibrium effects.

Interestingly, phase variations across the system display
different natures. They can be coherent and deterministic, or
incoherent and random depending whether they arise from
collective dynamics or, e.g., from quantum and thermal fluc-
tuations. While experiments pointed to the existence of phase
variations in dipolar supersolids [11–13], a comprehensive
study of their characteristics and origins is lacking. Providing
access to local properties of the system, high-energy scattering
measurements may help by bridging this gap. Such scattering
protocols have been successfully used across a vast range of
disciplines, from high-energy [14–17] to condensed-matter
physics [18,19]. They allowed measurements, e.g., of the
condensate fraction in superfluid liquid helium [20] and of
beyond-mean-field effects in ultracold gases [21–27].

In this Letter, we study the response of a dipolar super-
solid to a high-energy two-photon Bragg scattering probe. As
the system crosses from the Bose-Einstein condensate (BEC)
into the SSP, we observe a strong reduction of the scatter-
ing response, that eventually vanishes in the ID regime. A
comparison with theory reveals that the response is reduced

2469-9926/2021/104(1)/L011302(6) L011302-1 ©2021 American Physical Society
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stronger than expected from the emergence of a density modu-
lation in the SSP. Going beyond equilibrium expectations, we
find that coherent phase variations, emerging due to the cross-
ing of the BEC-SSP transition, are the cause of the anomalous
response suppression.

We start by reviewing the description of the dynamical
response of an interacting many-body system to a weak
scattering probe within the linear-response theory [28]. The
dynamic structure factor (DSF), S(k, ω), quantifies the density
response of a system to a probe of momentum, h̄k, and energy,
h̄ω. For weak interactions at equilibrium, the DSF is related to
the excitation spectrum via the Bogoliubov amplitudes, u j and
v j , describing the excitation mode j of energy h̄ω j . It reads

S(k, ω) =
∑

j

∣∣∣∣
∫

dr
(
u∗

j (r) + v∗
j (r)

)
eikrψ0(r)

∣∣∣∣
2

× δ(h̄ω − h̄ω j ), (1)

where we neglect the creation of multiple excitations. Here,
ψ0 is the system’s macroscopic ground-state wave function.

Equation (1) gives different information depending on
the momentum and energy ranges [28]: For low-k trans-
fer, S(k, ω) is sensitive to the system’s collective response,
whereas, in the high-k and high-energy regime, the DSF is
proportional to the momentum distribution of the system,
ñ(k). Here, we focus on the latter regime to probe the im-
pact of density modulation in a superfluid state. We study
the response along the density-modulated direction, y, with
k = (0, ky, 0). In the regime of free-particle excitations (u j →
eik j y, v j → 0, ω j → h̄k2

j /2m with m the atomic mass), the
impulse approximation becomes valid and we find [28–32]

S(ky, ω) =
∑

j

ñ(0, ky − k j, 0) δ(h̄ω − h̄ω j ). (2)

On resonance, ω = ω j and ky = k j , the DSF is uniquely
determined by the system’s momentum distribution
at k = 0, independent on the probed momentum k j ,
S(k j ) ≡ S(k j, ω j ) ∝ ñ(k = 0).

To identify the free-particle regime, we calculate the
excitation spectrum. Following the Bogoliubov–de Gennes
(BdG) theory, a free-particle excitation is an elementary
excitation of plane wave character. This occurs for excita-
tions of high enough energy and single-particle character
(‖uj‖ = ∫ |u j (r)|2dr = 1 and ‖v j‖ = 0) [28,33].

In order to gain an intuition, we begin with calculating
the Bogoliubov amplitudes and S(k, ω) in the thermodynamic
limit. We consider the BdG theory for an infinitely elongated
erbium quantum gas. As shown in Figs. 1(a) and 1(b), the
supersolid spectrum exhibits a periodic structure in momen-
tum space with a period given by the reciprocal lattice vector
kc. The state develops a density modulation along the axial
direction with wavelength 2π/kc [see inset in Fig. 1(b)]. The
two lowest branches correspond to the superfluid and crystal
branches, respectively [35]. At higher energies, excitations
follow a gapped parabolic dispersion branch and a flat band
at ω ≈ 1.25 ωz (corresponding to transverse breathing modes
of single-droplets). Importantly, the excitation modes of the
parabolic branch have a free-particle character, when ‖u‖ = 1.
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FIG. 1. (a) Axial excitation spectrum of the transversely sym-
metric modes and (b) corresponding DSF of an infinitely elongated
dipolar supersolid at as = 51 a0 in a harmonic trap with ωx,y,z =
2π × (250, 0, 160) Hz. The color maps correspond to ‖u‖ and
S(k, ω), respectively. The inset shows the integrated axial den-
sity profile n(y) of the ground state with mean density 4.7 ×
103μm−1. (c) S(k) for the 3D-trapped system with ωx,y,z = 2π ×
(250, 31, 160) Hz. S(k) is calculated at k = 4.2 μm−1 ≈ 1.8 kc (grey
line) and normalized by its value at the BEC-SSP phase transition,
S∗. The atom number is varied with as to match the experimental
conditions [34]. The red (blue) line shows the result from the SIA
(DAA). (upper inset) Integrated density profile of the ground state at
as = 54.49 a0 and N = 5 × 104 atoms. (lower inset) Evolution of the
ground state’s central contrast C. For the infinite (3D-trapped) case,
kc = 2.3 μm−1(2.4 μm−1).

We now move on to the three-dimensional (3D) trapped
case for the experimentally relevant parameters. Previous
works have shown that the main spectral features qualitatively
persist when changing from the infinite to the finite sized sys-
tem [10–12,36,37]. We calculate the spectrum of excitations
as in Refs. [10,38] and extract the Bogoliubov amplitudes.
Similar to the infinite system, we find a free-particle character
for excitations with h̄ω � 0.6 h̄ωz [34]. This enables the im-
pulse approximation for the later experiments, which are done
at an exemplary momentum of k ≈ 1.8kc. Figure 1(c) shows
S(k ≈ 1.8kc), which decreases when entering the SSP from
the BEC and further reduces when lowering as. Simultane-
ously, the ground-state density develops a spatial modulation
(upper inset), whose contrast C rapidly increases (lower inset).
Note that C evolves faster with as than S(k). For instance,
at as = 53 a0, C ≈ 1, whereas S(k) reduces only by about
35 %. Here, C = (nmax − nmin)/(nmax + nmin) with nmax (nmin)

L011302-2
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being the central maximum (minimum) of the integrated den-
sity [34].

To gain an intuitive understanding of the density-response
reduction, we develop a 1D model [32]. Using two differ-
ent wave-function ansatzes, we evaluate S(k) in the weak
and strong density-modulation regimes. As discussed in
Refs. [39–41], for weakly modulated supersolids, with C � 1,
the ground-state wave function can be approximated by a
fully coherent sine-modulated function on top of a uniform
background. At leading order in C, it reads ψ (y) = √

n(1 +
C sin(kcy)/2), with n being the mean density. Applying this
sine ansatz (SIA) in Eq. (2), we find S(k) ∝ n(1 − C2/8).
This result shows that an increasing contrast directly causes
a suppression of the DSF. We find a similar C dependence
for the superfluid fraction derived from Leggett’s formula [9],
fSF = 1 − C2/2. Therefore, in the weakly modulated regime,
the reduction of the high-energy scattering response con-
nects to the reduction of the superfluid fraction [32]. We
benchmark our SIA results with the BdG calculations for an
equilibrium supersolid state, by evaluating C from the full
Gross-Pitaevskii equation (GPE) solution [34]. As shown in
Fig. 1(c), despite its simplicity, the SIA scaling reproduces
very well the full numerics up to C � 40 %. For larger C, as
expected, the model breaks down.

For large C, we employ a droplet-array ansatz (DAA),
describing the system as an array of ND droplets, ψ (y) =∑ND

j=1 χ (y − jd )eiθ j [3,42]. Each droplet is described by a
Gaussian function, χ (y), of size σ , separated by a distance
d > σ from its neighbours. Each droplet is allowed to have
an independent, yet uniform, phase θ j . Within the DAA, the
DSF shows the proportionality S(k) ∝ n| 1

ND

∑ND
j=1 eiθ j |2σ/d .

It decreases with both the density overlap between droplets,
set by σ/d , and the phase variance along the array. The phase
variance can not be accounted for in the ground-state GPE
theory, which describes a state possessing a uniform phase.
To benchmark the DAA results with the BdG calculations, we
thus set θ j = 0 for all j [34]. We find a very good agreement
for C > 80 %. The effect of phase variations on the scattering
response will be later studied using dynamical simulations;
see Figs. 3 and 4.

To summarize, at equilibrium, the high-energy response
decreases when the contrast increases. For a small den-
sity modulation, the response can be directly connected to
Leggett’s estimate for the superfluid fraction. Moreover, the
presence of phase variations further decreases the response,
as we explicitly show using the DAA. We now compare our
theory expectation with the experiment.

In the experiments, we access the density response of a
supersolid by performing high-energy Bragg scattering on a
166Er dipolar quantum gas, confined in an axially elongated
harmonic trap. A transverse homogeneous magnetic field ori-
ents the atomic dipoles and sets as [3]. We initially prepare
the system in the ordinary BEC phase, and enter the SSP
via interaction tuning by linearly lowering as below a critical
value, a∗

s , for which the BEC-SSP phase transition occurs.
Similar to previous experiments [3,10], a∗

s is extracted with
an interferometric technique. For the present trap and atom
numbers, N , we measure a∗

s = 54.94+28
−13 a0. Furthermore, we

observe the ID regime below as ≈ 53.9 a0, see Ref. [34].

FIG. 2. Fraction of Bragg-excited atoms as a function of ω for
various as across the BEC-SSP-ID regimes (see labels). The spectra
are vertically offset for visibility. Here and throughout the Letter,
the error bars correspond to one standard error. Solid lines show the
Gaussian fits to the data.

For the Bragg excitation, we project on the atoms an optical
lattice potential of constant depth V for a duration τ = 7 ms.
The lattice has a constant wave vector k = 4.2(3)μm−1 along
y and moves with a variable frequency ω. After the Bragg
excitation, we measure the integrated momentum distribution,
ñ(kx, ky), using a time-of-flight expansion of 30 ms. The num-
ber of excited atoms Nexc is extracted in a narrow region of
interest around k [34]. For a fixed as, we find a clear resonance
in Nexc/N as we vary ω. From a Gaussian fit we extract the
resonance peak’s amplitude, F . From linear response theory,
we expect F ∝ V 2τS(k) [43]. For the relevant as range, we

0

1

2

3

4

F
 (

%
)

5
BECSSPID

54 54.5 55 55.5 56 56.5 57
as (units of a0)

53.5

FIG. 3. Experimental F (circles) versus as across the BEC-SSP-
ID phases. For the lowest three as, we do not observe a resonance
and plot the standard deviation of the data as an error estimate.
Horizontal error bars correspond to uncertainties of the magnetic
field [34]. Theoretical F (lines) from the BdG calculations on the
ground state (grey), from the RTE simulations (black), and from the
rescaled BdG calculations that include 
� obtained from the RTE
(blue). The gray shading corresponds to the uncertainty in as of the
experimental phase transition (vertical line).
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FIG. 4. RTE simulations without Bragg excitation. (a) Time evo-
lution of the integrated in situ density of the wave function for
as = 54.04 a0. (b) 〈C〉τ (triangles) and 
� (squares) versus as.
The grey line corresponds to the central contrast obtained from the
ground-state theory. The solid blue line is a smooth interpolation
of 
�, fixed to unity at the phase transition point. The shadings
give the standard deviation obtained from five simulation runs. The
vertical line corresponds to the phase transition point. (c) Phase cuts
corresponding to the simulation shown in (a).

have checked the scaling with τ and V [34]. Figure 2 shows
examples of the Bragg-excitation spectrum for various as. In
the BEC regime until the onset of the SSP, we observe a down-
ward shift of the resonance frequency without a significant
change in F [34]. In contrast, as we enter into the SSP regime,
F undergoes a stark reduction. In the ID regime, the resonance
peak completely vanishes.

Figure 3 shows the evolution of F across the BEC-SSP-ID
phase diagram. The as extension of the three phases (see back-
ground colors), has been determined from independent mea-
surements of the phase coherence and density modulation of
the states [3,34]. When reducing as, F first slightly increases
in the BEC phase, continuously crosses at the BEC-SSP tran-
sition, and then drastically reduces to �1%, close to our
detection level, when lowering as further by ∼0.5 a0. Finally,
for as < 54 a0, we do not observe any resonant response.

We compare the experimental results with our BdG theory
for the stationary, trapped gas. While in the BEC regime, ex-
periment and theory show a good agreement, in the SSP they
start to substantially deviate from each other. The data shows a
much faster reduction of F than the one predicted by the BdG
theory. This suggests that an important ingredient is missing
in the ground-state theory. Our DAA model provides a first
intuitive explanation, showing that, not only the increasing
crystalline modulation but also phase variations can lead to
a reduction of the system response. We envision two sources
of phase variations. First, quantum and thermal fluctuations,
which are expected to dominate in the ID regime, yield phase
patterns varying from shot to shot. Second, coherent dynam-
ics, as, e. g., induced by the crossing of the BEC-SSP phase
transition, leading to reproducible phase patterns. Neither
phenomena are accounted for in the BdG calculations.

To investigate these effects, we simulate the system real-
time evolution (RTE) [44]. Our calculations reproduce the full

experimental sequence [34]. Random shot-to-shot variations
are included by adding an initial population of BdG modes
from quantum and thermal noises [34]. From the simulated
momentum distributions, we extract the excited fractions, as
done for the experimental data. Contrary to the BdG results,
the RTE simulations describe remarkably well the data both
in the BEC and SSP phase; see Fig. 3.

The impact of the changing contrast and phase variations
across SSP-ID phase can be seen from RTE without a Bragg
excitation for different holding times. As shown in Fig. 4(a),
the density profiles n(y) exhibit only a slight reduction of
the contrast with time due to atom loss. As expected, the
calculated 〈C〉τ , time averaged over the Bragg scattering du-
ration, increase with decreasing as. However, for each as, we
observe a 10–30 % lower contrast than the one extracted from
the ground-state calculations. Since a reduced contrast would
mean an increase in F , the varying contrast cannot explain the
mismatch between the BdG theory and both the experimental
and RTE results; see Fig. 3.

The RTE calculations also reveal that the phase of the wave
function, θ (y), develops a nonuniform profile. For instance
at as = 54.04 a0, θ (y) exhibits a stairlike profile with fairly
constant values within the density peaks and discrete phase
steps in between them; see Fig. 4(c). This behavior suggests
that each density peak acquires an independent phase, despite
their density links. We also observe that the phase pattern
is fairly reproducible between simulation runs and mainly
affected by the coherent dynamics arising by the crossing of
the phase transition [34].

Following the DAA model, phase variations are expected
to reduce S(k) by a factor 
� ≈ | 1

ND

∑ND
j=1〈eiθ j 〉τ |2 [28,34].

As shown in Fig. 4(b), 
� is almost unity close to the BEC-
SSP phase transition and significantly drops when lowering as

towards the ID regime, where it starts to flatten. The standard
deviation of 
� relates to the shot-to-shot reproducibility of
the phase pattern. In the SSP, the deviation remains small,
confirming that the phase variations originate from coherent
dynamics. In contrast, the deviation increases when reaching
the ID regime. This highlights the increasing effects of fluctu-
ations, showing that the phase variations ultimately become
incoherent. We empirically account for the effect of phase
variations in the BdG theory by scaling the DSF with 
� over
the whole SSP-ID regimes. As shown in Fig. 3, this simple
inclusion of 
� shows the pronounced impact of the coherent
phase variations for the experimentally observed response.

In conclusion, we demonstrate high-energy two-photon
Bragg scattering spectroscopy as a sensitive probe of density
modulations, and coherent and incoherent phase variations
in a quantum system. Accounting for the phase variations
is crucial to fully capture the behavior of supersolid states
created in experiments via a dynamical tuning of the interac-
tions. Our work provides important steps to a more complete
vision of the dipolar supersolid, including out-of-equilibrium
phenomena, and opens the door for future exploration of
critical phenomena induced by the dynamical crossing of the
BEC-SSP phase transition [45–47].
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A. Preparation of the BECs

We prepare a BEC of 166Er by loading about 3 × 106

thermal atoms into a crossed optical dipole trap (ODT)
and subsequent evaporative cooling, see Ref. [1, 2]. Dur-
ing the evaporative cooling, a homogeneous magnetic
field of 1.9 G is present to ensure high enough rethermal-
ization rates to obtain ultracold temperatures. After the
evaporation, we adiabatically modify the corresponding
ODTs laser powers and beam waists, to shape the con-
fining potential Vtrap(r) = m(ω2

xx
2 +ω2

yy
2 +ω2

zz
2)/2 to a

cigar-shaped geometry with harmonic trapping frequen-
cies ωx,y,z = 2π × [250(1), 31.7(13), 156(2)] Hz. Consec-
utively, the magnetic field is lowered to a value corre-
sponding to 64.9 a0. After this preparation procedure,
we obtain a BEC with a total atom number of 1.2× 105

atoms and a condensed fraction of 70 %. The temper-
ature of 95(5) nK is obtained from time-of-flight (ToF)
expansion measurements.

To enter the BEC-SSP-ID regimes, we lower down as
linearly in 20 ms to the corresponding values given in the
main manuscript. We then let the system equilibrate for
10 ms and consecutively apply a Bragg pulse of 7 ms du-
ration. In order to access the momentum distribution
of our atomic cloud, we perform a ToF expansion, by
abruptly switching off all trapping potentials directly af-
ter the Bragg excitation. After 30 ms of free expansion,
we take an absorption image of the cloud along the dipole
direction. We note that, due to residual magnetic field
drifts in the experiment (estimated to be ±2 mG), the un-
certainty on as, during the Bragg pulse, ranges between
±0.1 a0 and ±0.2 a0, increasing for lower as. This uncer-
tainty is represented by the corresponding error bars on
our data in the main manuscript.

SSP BEC
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FIG. S1. Fraction of atoms in one side peak of the atomic
cloud’s interference pattern across the BEC-SSP phase tran-
sition. Error bars denote one standard error obtained from
about 30 measurements. The vertical line shows the obtained
phase transition point. The different grey shadings corre-
spond to the different uncertainties that are taken into ac-
count to obtain the total uncertainty, ∆a∗s , of a∗s (see text).

B. Determination of experimental BEC-SSP phase
transition

In order to determine a∗s for our experimental param-
eters, we perform a time-of-flight expansion of the sys-
tem in the BEC or SSP regime after the equilibration
time. Here, no Bragg pulse is applied. We find either
an expanded ordinary BEC or an interference pattern
of the expanded supersolid, where a part of the atoms
appear in two side peaks around ky ≈ ±kc. The atom
number in these two side peaks is directly related to the
modulation contrast of the in-situ cloud [2–4]. We mea-
sure the fraction of atoms in a single side peak, fside,
and monitor its evolution versus as; see Fig. S1. In the
BEC regime, where no density modulation is present, we



2

find fside = 0 down to as,1 = 55.00 a0. After crossing
the BEC-SSP phase transition, we observe fside > 0 for
as ≤ 54.88 a0 = as,2, which increases with lower as. Tak-
ing the mean, (as,1−as,2)/2, we find a∗s = 54.94 a0 with an
uncertainty of ∆a∗s,P = 0.05 a0, coming from our resolu-
tion in as; see shadings in Fig. S1. We include a magnetic
field uncertainty corresponding to 2 mG (±0.12 a0 at a∗s ),
which increases the uncertainty to ∆a∗s,B = ±0.13 a0.
Furthermore, we take a finite resolution of fside ≈ 0.2 %
into account and obtain the final estimate of the critical
point of the BEC-SSP phase transition a∗s = 54.94+28

−13 a0.

C. Transition from SSP to ID
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FIG. S2. Amplitudes Aφ (red circles) AM (blue squares)
versus as. Error bars denote the standard error from about 30
experimental realizations [2]. Non-zero values of AM enable
us to identify modulated states and confirms the BEC-SSP
transition point (vertical line, gray shaded area). The SSP is
identified by AM ≈ Aφ > 0 and extends down to as = 53.9 a0.
For lower as an ID state is observed (Aφ < AM > 0).

We use the same analysis of Aφ and AM as in Ref. [2]
to distinguish in the experiment the SSP and the ID
regime. In brief, Aφ relates to a reproducible interfer-
ence pattern in time of flight and thus reveals a coherent
and modulated state. AM relates only to the presence
of an in-situ density modulation (structures in the ToF
images). By combining both observables, one can dis-
tinguish the SSP (Aφ ≈ AM > 0), the ID (Aφ < AM)
and the ordinary BEC regimes (Aφ = AM = 0) in the
experiment, see Fig. S2. We find that for as < 53.9 a0
the system is in the ID regime. The measurements are
performed directly after the equilibration time and with-
out a Bragg excitation (same timings as in Sec. B). We
note that the ratio Aφ/AM is mostly sensitive to phase
fluctuations, which lead to different interference patterns
in different experimental runs and is insensitive to repro-
ducible phase variations in the system. The latter could
affect the structure of the interference patterns, yet in
a reproducible way. Therefore, Aφ/AM is an observable
that is adapted to describe the coherence of the system
but does not measure the phase variations, investigated
in the main manuscript, which are induced by diabatic

dynamics.

D. Calibration of atom loss and atom number for
BdG theory
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FIG. S3. Atom number in the BEC versus as for different
times in the experiment, corresponding to the beginning (cir-
cles), middle (triangles) and end (squares) of the Bragg pulse.
Error bars denote the standard error from 5 measurements.
The lines are spline interpolations to the corresponding data.
The measurements were obtained without applying a Bragg
pulse. The vertical line indicates the measured phase transi-
tion point.

Due to three-body recombination losses, the atom
number, N , in the condensed part is decreasing during
the 7 ms of the Bragg pulse by typically 10-30 %. There-
fore, the atom number in the experiment varies with
as, which we include in our BdG theory of the three-
dimensionally trapped system. We note that we do not
observe additional atom loss due to the presence of the
Bragg excitation, as the wavelength of the used laser light
is far enough detuned from any atomic resonance (see
Sec. E).

To extract N we perform an additional set of measure-
ments in which we do not apply a Bragg pulse and, after a
given hold time in trap, take absorption images after a 30
ms ToF expansion. From these images, the thermal com-
ponent is fitted by an isotropic 2D Gaussian function and
subtracted. A final numerical integration over the image
yields N without the need of an additional fitting of the
condensed part itself. In Fig. S3, we show N across the
phase diagram for different timings in the experiment,
corresponding to the beginning, the middle and the end
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of the Bragg pulse. Each timing is interpolated with a
spline fit. The fitted values of the intermediate timing
(orange line in Fig. S3) is used as the atom number in
our BdG theory.

E. Bragg spectroscopy

The Bragg excitation beams are realized holographi-
cally with a digital-micromirror device (DMD), as de-
tailed in Ref. [5]. In short, the setup uses a near-resonant
laser light, red-detuned by 71(1) GHz from the 401 nm
transition of 166Er. These two Bragg beams interfere un-
der an angle on the atoms’ position, giving rise to an in-
terference pattern. In our setup this angle can be tuned,
but for this current work we keep it fixed to obtain an
interference pattern with a wave vector k = 4.2(3)µm−1

along y. The value and uncertainty on k is deduced
from offline measurements of the angle between the two
Bragg beams. To excite the system, the Bragg scattering
needs to supply energy, h̄ω, which is introduced with a
frequency difference, ω, between the two Bragg beams.
Here, we use a sequence of holographic gratings that is
uploaded on the DMD and continuously shifts the phase
of one beam in 9 steps from 0 to 2π. Depending on the
frame-rate of the uploaded sequence, we can vary ω from
0 Hz to 1000 Hz.

To calibrate the depth V of our Bragg potential,
we perform Kapitza-Dirac-diffraction measurements [6].
For these measurements, we tune the laser light
closer to the atomic transition (20.6 GHz) and use
the maximally available power for our Bragg beams.
By doing so, we achieve a maximum optical depth
of Vmax/h = 430(50) Hz, corresponding to 3.2(4)Erec,
where the recoil energy Erec = h̄2(k/2)2/(2m) = 135 Hz.
In order to extract the potential depth V of our Bragg
scattering probe, we rescale this calibrated value ac-
cording to the corresponding laser light detuning and
power used for the Bragg scattering [7]. We obtain
V = 42(5) Hz, which is well inside the linear scatter-
ing regime (see Sec. F and Fig. S6). The exact calibra-
tion of the potential depth does not include systematic
effects, as for example inhomogeneities of V cross the
atomic cloud or in-trap dynamics of the atoms during
the Kapitza-Dirac-diffraction measurement. Neverthe-
less, we note that the estimation of the linear response
regime is insensitive to the exact calibration of V . We
furthermore note, that a direct comparison of F from the
experiment with the one from the RTE suggests that V
needs to be rescaled by about 1.7.

Figure S4 gives examples of our images for a resonant
and an off-resonant Bragg scattering frequency. For the
resonant case (Fig. S4, left panel) we find scattered atoms
at a high momentum around ky ≈ k. As they appear out-
side of the interference patterns, observed from the un-
perturbed system, they constitute a clean signal for the
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FIG. S4. Examples of momentum distributions of a super-
solid at as = 54.59(13) a0 after an applied Bragg excitation
(a) on resonance at 1.7 h̄ωz and (b) off resonance at 3.7 h̄ωz.
The two side peaks appearing around ky ≈ ±2.4µm−1 con-
stitute, together with the central peak at k ≈ 0µm−1, the
interference pattern obtained when expanding a supersolid
state. The black box indicates the region of interest from
which Nexc is extracted. Each image is an average of 15 ex-
perimental realizations.

analysis of the excited fraction. We count the number
of atoms, Nexc, in a region of interest (ROI), indicated
by the black boxes in Fig. S4. We note that we carefully
checked that neither F , nor ωk, changes within the un-
certainties when increasing the ROI size by 30%.. We
measure the total atom number, N , for each measure-
ment individually, by performing a similar count on a
rectangle of 12µm−1 by 14µm−1, covering all condensed
and scattered atoms. By measuring Nexc/N for different
excitation frequencies, we obtain a spectroscopy of the
Bragg scattering. We note that due to thermal atoms,
present in the analyzed region of interest, all Bragg res-
onances show a small offset, which is extracted from the
offset of the Gaussian fit to the resonance and then sub-
tracted.

From the Bragg excitation spectra, we extract the
resonance peak’s amplitude, as discussed in the main
manuscript, and a resonance frequency, ωk. The latter
is shown in Fig. S5 as a function of as. We observe that
ωk decreases monotonically from high to low as, across
the BEC-SSP phase transition. This behaviour is consis-
tent with the extracted ωk from the RTE theory. Fur-
thermore, we calculate the expected resonance frequency
from the BdG calculations. In the BEC regime, the BdG
theory predicts a softening of the measured excitation
modes that relates to the roton softening (see Section
G). This equilibrium BEC expectation agrees with the
experimental results and the dynamical simulations. In
contrast, a disagreement arises after crossing the BEC-
SSP phase transition with lowering as. Here, the BdG
theory predicts a hardening of the measured excitation
modes in the supersolid regime, which is not observed
neither in the experiment, nor in the RTE simulations.
This qualitative difference can stem from the increased
phase variations that develop in the system. Indeed, the
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phase variations intrinsically connect to finite velocity
fields in the system that effectively make the excitation
modes softer.
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FIG. S5. Extracted resonance frequencies, ωk, versus as (cir-
cles) and their comparison with the expected resonance posi-
tion from the BdG theory (gray line) and ωk from the RTE
(connected dots). The vertical line indicates the BEC-SSP
phase transition point and its shading the uncertainty on a∗s .

F. Variations of the excited fraction with the Bragg
pulse duration
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FIG. S6. Evolution of F during the Bragg pulse for three ex-
emplary as = [55.5(1), 54.0(1), 53.3(1)] a0 (black, red, blue),
corresponding to the BEC, SSP, ID regimes, respectively.
Each data point corresponds to an average of 5 to 15 mea-
surements and its uncertainty to the standard error. The
solid lines correspond to a linear fit and its shading to the
fit’s 68 %-confidence bound. The inset shows the evolution
of F with the applied potential depth, V , of the Bragg pulse
for τ = 7 ms for a supersolid state at as = 54.28(14) a0. The
solid line corresponds to a quadratic fit up to V = 80 Hz, the
dashed line is the extension of the fitting.

In Figure S6, we present the measured evolution of F
with the Bragg pulse duration from 0 to 7 ms for a fixed ω.
Across the BEC-SSP-ID regimes, we find a linear scaling

of F with τ , which is consistent with the expected scaling
from BdG theory, F ∝ V 2τS(k) [8]. Furthermore, we
probe the quadratic scaling of F with V in the SSP and
find also here an agreement up to V = 80 Hz (see inset).

G. Evolution of the excitation spectrum with as for
the infinite cigar-shaped gas

We calculate the excitation spectrum and the dynamic
structure factor (DSF) of an infinitely elongated, cigar-
shaped dipolar supersolid in Fig. 1(a, b) of the main
manuscript. In Figure S7 we present the evolution of
the excitation spectrum across the BEC-SSP-ID regimes.
Figure S7 (a1-a5) shows the integrated density profiles of
the ground state along the unconfined direction for dif-
ferent values of as and a fixed mean axial density of
4.7× 103 µm−1. Figure S7 (b1-b5) shows the correspond-
ing excitation spectrum. At large enough as, the ground
state has a uniform density along the unconfined direc-
tion (a1, a2 - BEC phase) and its excitation spectrum
shows the typical phonon-maxon-roton spectrum, first
predicted in [9, 10]. When decreasing as below a criti-
cal value, the ground state becomes density modulated
(a3, b3 - SSP phase) with a modulation wave number
kc = 2.3µm−1 close to the BEC’s roton momentum (b2),
underlying the connection between roton softening and
crystallization. The density modulation has a finite con-
trast and its value increases when lowering as further
down (a4, a5).

When crossing the BEC-SSP phase transition, the ex-
citation spectrum changes dramatically, becoming pe-
riodic, with the appearance of two gapless Goldstone
branches associated with phase (lower energy branch)
and density (higher energy branch) excitations, respec-
tively [11–13]. In addition to these gapless branches, one
observes gapped parabolic branches of excitations with
energetic minima at integer multiples of kc. The one
branch at ky = kc is the one investigated in the main
manuscript. For decreasing as, the energy minimum of
this parabolic branch increases towards the ID regime
[Fig. S7 (b3-b5)].

As described in the main paper, we use the norm of
the calculated Bogoliubov amplitude ‖uj‖ =

∫
|uj(r)|2dr

to distinguish whether a mode j is a collective excitation
or has a single-particle character [14, 15]. Collective ex-
citations feature ‖uj‖ � 1 whereas single-particle excita-
tions have ‖uj‖ ' 1. In Figure S7 (b1-b5), we color each
excitation mode according to ‖u‖. We find that lower
energy modes, such as the roton mode in the BEC and
the Goldstone modes in the SSP have a clear collective
nature. The energetically higher modes (h̄ω >∼ 0.5 h̄ωz),
of the parabolic branch in the SSP and the ky > kc-
branch in the BEC, have ‖uj‖ ' 1 across the BEC-SSP
phase transition. We note that the condition ‖uj‖ ' 1
does not directly identify an excitation mode as a free-
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FIG. S7. Axial excitation spectra of the infinitely, extended gas across the BEC-SSP-ID regimes in a ωx,y,z = 2π(250, 0, 160) Hz
trap with fixed axial density n0 = 4.7 × 103µm−1. (a1-a5) Integrated density profiles along the unconfined direction, for
as = (52.00, 51.40, 51.25, 51.00, 49.75) a0. (b1-b5) Transverse symmetric modes of the corresponding excitation spectrum
colored according to ‖u‖. (c1-c5) The corresponding S(k, ω). For visibility, the DSF is broadened with a Gaussian function.

particle. To obtain a free-particle excitation, the mode
needs to be of single particle character and additionally
its energy needs to be mainly given by the kinetic energy.
Therefore, free-particle excitations have a wave function
that is a plane wave [15]. We note that for our exper-
imentally relevant energy regime, the probed excitation
modes are described well by a plane wave, as shown in
Sec. I. and Fig. S10 (b).

From our simulations, we also calculate the DSF. In
the BEC phase [Fig. S7 (c1, c2)] the DSF is dominated
by the roton mode at ky = kc. Moreover, the deeper
the roton minimum, the stronger is its response to small
density perturbations. We note that, in the BEC phase,
this affects also the density response and the energy even
for momenta higher then the roton momentum. After
crossing the phase transition into the SSP, we find that
the DSF of the parabolic branch [Fig. S7 (c3)] smoothly
connects to the free-particle branch of the BEC phase.
For decreasing as, the DSF of the free particle branch
becomes smaller [Fig. S7 (c4, c5)].

H. BdG theory for the three-dimensional trapped
gas

For the current manuscript, we employ similar BdG
and ground state calculations as already described in
Refs. [5, 13, 16]. In this theory the gas is trapped in
all three dimensions. For calculating the ground states,
we use the experimentally extracted atom number at
the intermediate timing of the Bragg pulse (presented in
Fig. S3, triangles). The radially integrated density pro-
files of the ground states in the SSP regime are presented
in Fig. S8. We note that in this theory, the BEC-SSP
phase transition lies at 3.79 a0 below the experimentally
determined one. This shift in as between theory and
experiment has also been found in Refs. [2, 5, 17]. There-
fore, throughout the manuscript, the BdG theory and the
ground state calculations are presented with an up-shift
of 3.79 a0 for as.

The presence of an axial trapping potential, leads to
discrete excitation modes in the spectrum, see Fig. S9 (a).
Furthermore, each mode is broadened in ky. The finite
duration of the Bragg pulse gives an energy broadening
of each excitation mode (Fourier broadening ∼ h×130 Hz
full width at half maximum) which is much bigger than
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as of the supersolid ground states in a trap with harmonic
frequencies ωx,y,z = 2π × (250, 31, 160) Hz. For each as, we
use the atom number measured in the experiment (see Fig. S3,
triangles).

the energy spacing between the modes in the spectrum.
Therefore, in the Bragg spectroscopy only a single res-
onance is visible, which is constituted of multiple exci-
tation modes. To account for this, we calculate S(k, ω)
while broadening each mode in energy according to the
Fourier-broadening, expected from a 7 ms Bragg pulse,
see Fig. S9 (b). After calculating the broadened S(k, ω)
and evaluating it at the experimental k, we also find in
the BdG theory a single resonance in energy. To compare
with the experiment, we extract S(k) from a Gaussian fit
to this resonance; see also [5].

I. Free particle regime in the BdG theory for a
trapped gas

To transfer the insights from the BdG calculations of
an infinitely extended system (see Sec. G) to the experi-
mentally trapped case, we also analyze ‖u‖ and ‖v‖ of the
excitation modes obtained from the BdG calculations of
a three-dimensional trapped gas. Similar to the infinitely
extended system, we find that modes with h̄ω >∼ 0.5 h̄ωz
have ‖u‖ ≈ 1 and therefore a single-particle character
across the BEC-SSP-ID regimes. This is exemplified in
Fig. S10 (a) where we show, for an exemplary state in the
SSP, the norm of the obtained Bogoliubov amplitudes
versus the energy of the corresponding mode.

As mentioned already in Sec. G, to further identify a
single particle excitation as a free particle one, the ex-

S (k, ω) (units of S*)
>20 1

0 1 2 3 4
ky (units of lz)

0 1 2 3 4
0

1

2

3

4

ω
 (u

ni
s o

f ω
z)

ky (units of lz)

(b)(a)

FIG. S9. Dynamic structure factor calculations for the 3D-
trapped system in the SSP at 54.4 a0. (a) DSF with a small
broadening of each excitation mode, showing the discreteness
of the spectrum. Here, lz =

√
h̄/mωz ≈ 0.6µm denotes

the harmonic oscillator length along z. (b) DSF after ap-
plying a broadening, corresponding to a 7ms long Bragg ex-
citation pulse (square-shaped pulse, sinc-squared broadening
function). Note that the lowest energy mode at kylz ≈ 1.5
has a very strong contribution to the DSF, giving rise to vis-
ible harmonic components at higher energies. The vertical,
dashed lines indicate the experimentally probed momentum.

citation’s wave function needs to be a plane wave. To
investigate this aspect, we study the excitation modes’
density profiles and find for modes in the experimentally
relevant energy regime a clear plane wave character. Fig-
ure S10 (b) shows the radially integrated density profile of
an exemplary excitation mode of a supersolid and com-
pares it to the integrated density of the ground state.
The plane wave character is clearly visible as a modu-
lation with k ≈ 4.1µm−1 across the whole system. We
only find a mild reduction of the plane wave’s amplitude
towards the outer region of the system. As a comparison,
we show in Figure S10 (c) the integrated density profile
of an excitation mode at lower energy, 0.55 h̄ωz, which
also has ‖u‖ ≈ 1, but is clearly not a plane wave.

We note that, from the theory of infinite systems,
the low-energy low-momentum scattering response is ex-
pected to directly relate to the superfluid density, via the
stiffness of the lowest-energy branch [15, 18]. However,
such a relation is difficult to establish for the finite-sized
experimental systems and measurements in this regime
are thus expected to be hard to interpret. Therefore,
our measurements in the high-energy high-momentum
regime circumvent this issue and offer an alternative
probe scheme, less affected by finite-size limitations.

J. Comparison of the finite-size BdG theory to the
self-consistent SIA and DAA model

From the ground state profiles of the three-dimensional
trapped BdG theory in Fig. S8, we numerically evaluate
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FIG. S10. (a) Bogoluibov amplitudes, ‖v‖ (crosses) and ‖u‖
(circles), for the excitation modes of a trapped supersolid at
as = 54.49 a0. (b) Integrated density profile, nexc, of an exem-
plary excitation mode with an energy of 1.7 h̄ωz (red line) and
k ≈ 4.1µm−1 and a comparison with the integrated ground
state density, nGS, (grey line). (c) The same as in (b) but for
an excitation mode at 0.55 h̄ωz.

our SIA and DAA model on the corresponding ground
states. To self-consistently evaluate the SIA result from
the ground state, we need to estimate the contrast of the
density modulation, C = (nmax − nmin)/(nmax + nmin).
We determine nmin from the minimum density at y = 0
and nmax from the density of one of the two most-central
density peaks. To evaluate the DAA model, we numeri-
cally extract the 1/e-size, σ, of the two central droplets
and the distance d between them. To estimate the den-
sity, we calculate the mean density in the central region
between the two central droplets. Therefore, our model
comparison takes only the central part of the system into
account and neglects the outer density regions. Further-
more, as our models extract only the scalings of the DSF

with the ground state properties and not its absolute
value, we renormalize the SIA and the DAA. For the
comparison in Fig. 1 of the main manuscript we show the
finite BdG and the SIA rescaled to unity for the point at
the phase transition. The DAA is rescaled directly on the
BdG theory to match its values in the lower as regime.
Over the investigated as range, we find that both, the
SIA and the DAA, describe the BdG theory well for low
and large C, respectively (see main text), and for mo-
menta k ≥ 4.0µm−1. This gives an estimate for which
momenta the impulse approximation becomes valid.

K. Real time evolution of the Bragg scattering

Our theory for the RTE simulations was already pre-
sented in Ref. [16]. For the current manuscript, the sim-
ulations start with the ground state wave function with
N = 8.5 × 104 atoms at as = 60.9 a0. We add a ther-
mal population, corresponding to a randomly drawn oc-
cupation of the system’s excited states (incl. a ran-
dom phase) with a Poisson distribution, whose mean is
given by the Bose distribution (+1/2 to simulate quan-
tum fluctuations) for the mode’s energy at a temperature
of 100 nK [19]. This increases the total atom number to
about 1×105 (similar to the experimental situation) and
simulates thermal and quantum fluctuations in the sys-
tem.

In the time evolution, we reproduce the experimental
sequence, including a 20 ms long linear as ramp, followed
by a 10 ms holding at the final as and a consecutive 7 ms
Bragg excitation along y. In order to obtain the system’s
momentum distribution, we perform a Fourier-transform
of its wave function. On this momentum distribution, we
perform the same analysis as on the experimental data,
i. e. we analyse the fraction of excited atoms in a region
of interest around k ≈ 4.2µm−1 for various ω. The res-
onances are fitted with a Gaussian function to obtain F
from the RTE simulations. For the same reasons as men-
tioned for the BdG calculations (Sec. H.), the crossing
of the BEC-SSP phase transition in the RTE happens
3.34 a0 below the experimental phase transition. There-
fore, throughout the manuscript, the RTE theory is up-
shifted in as by 3.34 a0. We note that, when perform-
ing the RTE directly on the corresponding ground states
from the BdG theory, i. e. we do not include thermal
noise, the as-ramp and atom loss, we recover an excited
fraction that is well described by the BdG theory. This
indicates that the chosen analysis in ToF gives a reliable
measurement of S(k) and in particular a consistent result
with the 3D-trapped BdG calculations.
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L. Real-time evolution and characteristics of the
state’s wave function

To study the time evolution of the contrast and the
phase of the dynamically created supersolid states, we
perform RTE simulations without applying a Bragg ex-
citation and monitor the axial density and the phase pro-
files from the calculated wave functions [see Fig. 4 (a, c)
in main manuscript]. Typically, in the RTE we observe
ND = 4 − 6 droplets, containing a variable atom num-
ber across the system. We evaluate the time-dependent
central contrast, C, between the two central density
peaks numerically. The phase-variation factor ∆Θ =
| 1
ND

∑ND

j=1〈eiθj 〉τ |2 is calculated by extracting the mean
phase, θj , of each single density peak over its full-width
at half maximum.
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FIG. S11. RTE simulations with V = 0 (no Bragg excita-
tion applied). (a) The time evolution of the extracted central
contrast of the integrated in-situ density distributions for dif-
ferent as (see legend). (b) The extracted phase incoherence
of a central cut through the wave function (see text). The
shadings represent the standard deviation from 5 simulation
runs with different statistical draws of the thermal popula-
tion. The data presented in Fig. ?? (a, b) corresponds to the
time window of [0, 7] ms.

Figure S11 (a) shows C(t) over the whole simulation
time. For early times, we observe a small, but finite C
due to density noise in the simulations, which is com-
ing from the included thermal fluctuations. During the
holding time ([−10, 7] ms), for as < a∗s , we observe that
C first increases and consecutively slightly decreases due
to atom loss. Only for as < 54.2 a0 we find an oscillating
behaviour of the contrast in time. We note that there
is a time delay between the development of the density

modulation in the system and the timing of the as ramp
(which occurs during [−30, −10] ms).

To give another insight into the time evolution of the
system’s phase profile, we extract the global phase vari-
ation, α = 1

L

∫
L
|φ(0, y, 0) − 〈φ〉L |dy, of the wave func-

tion, which is extracted along a cut of φ along y. Here,
〈φ〉L denotes the averaged phase over the central region
L = [−7, 7]µm, see also [3]. In Figure S11 (b), we show
the time evolution of α for the whole simulation time.
For all as one sees a first local maximum in α (around
−20 ms), coming from an axial breathing mode which is
excited due to the as ramp. At longer times, we find for
54.5 a0 <∼ as ≤ a∗s , that α remains small while the density
contrast is finite. For as < 54.5 a0, we find that α seems
to approach a constant value, which increases with lower
as.
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Observation of a narrow inner-shell orbital transition in atomic erbium at 1299 nm

A. Patscheider ,1,* B. Yang ,1,* G. Natale ,1 D. Petter ,1,† L. Chomaz ,1,‡ M. J. Mark ,1,2

G. Hovhannesyan ,3 M. Lepers ,3 and F. Ferlaino 1,2,§

1Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,

Technikerstraße 21a, 6020 Innsbruck, Austria
3Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS, Université de Bourgogne Franche-Comté, 21078 Dijon, France

(Received 4 May 2021; accepted 30 July 2021; published 17 September 2021)

We report on the observation and coherent excitation of atoms on the narrow inner-shell orbital transition, con-
necting the erbium ground state [Xe]4 f 12(3H6)6s2 to the excited state [Xe]4 f 11((4I15/2 )0)5d (5D3/2 )6s2(15/2, 3/2)0

7.
This transition corresponds to a wavelength of 1299 nm and is optically closed. We perform high-resolution
spectroscopy to extract the gJ factor of the 1299-nm state and to determine the frequency shift for four bosonic
isotopes. We further demonstrate coherent control of the atomic state and extract a lifetime of 178(19) ms,
which corresponds to a linewidth of 0.9(1) Hz. The experimental findings are in good agreement with our
semi-empirical model. In addition, we present theoretical calculations of the atomic polarizability, revealing
several different magic-wavelength conditions. Finally, we make use of the vectorial polarizability and confirm
a possible magic wavelength at 532 nm.

DOI: 10.1103/PhysRevResearch.3.033256

I. INTRODUCTION

Ultranarrow atomic transitions are an extremely powerful
resource for high-precision measurements and for controlling
and manipulating atoms on a quantum level [1]. Prominent
examples are clock transitions in alkaline-earth-like atoms
[2–4]. The small spectral linewidth of these transitions en-
ables the high-resolution detection of energy shifts on very
fine scales. This unique property made it possible, e.g., to
observe SU(N)-symmetric interactions in both, ytterbium and
strontium [5,6]. An additional important avenue paved by
narrow transitions is the optical manipulation and coherent
control of ultracold atoms. The tuning of the interparti-
cle interactions using optical Feshbach resonances has been
demonstrated and benefits from the narrow linewidth due to
the suppressed photon scattering rate [7–11]. Coherent control
enabled the creation of ultracold molecules via Raman state
transfer [12–15], the preparation of the atoms in different
nuclear spin configurations [5,6], and the creation of spin-
orbit coupled quantum gases [16–19]. Finally, the coherent
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excitation allows for the realization of quantum computation
and quantum simulations, e.g., with neutral atoms loaded into
optical lattices [20–22].

Atomic species of the lanthanide family are multivalence
electron atoms and possess a special electron configuration, a
so-called submerged shell, in which the 6s subshell is filled,
while the lower-lying 4 f or 5d subshells are open, being
partially unoccupied. This leads to a large variety of optical
transitions in these elements, whose linewidths range from
tens of μHz to tens of MHz [23–25]. In contrast to alkaline-
earth-like atoms, which do not carry a magnetic moment in
their ground state, a selection of lanthanides allow for the
combination of a narrow transition with a large magnetic
moment. While narrow and ultranarrow transitions have been
extensively studied in alkaline-earth and ytterbium atoms,
only little is known for the other elements of the lanthanide
series. Some spectroscopic studies have been carried out for
dysprosium [26] and thulium [27,28].

For the specific case of erbium, there is a prediction of a
narrow inner-shell orbital transition, which has a change in
the total angular moment of �J = +1 (|J = 6〉 → |J ′ = 7〉)
and a change in the total spin of �S = 1 [23]. The transition
involves the excitation of a 4 f ground-state electron to a 5d
state; see Fig. 1. Theoretical calculations predict a linewidth of
about 2 Hz [23], which fills a gap between ultranarrow tran-
sitions in the mHz regime and transitions having linewidths
on the order of kHz, available in alkaline-earth atoms and
previously explored in lanthanide atoms. Moreover, in con-
trast to most narrow transitions in other atomic species, the
wavelength of 1299 nm lies within the telecom-wavelength
window, which, e.g., is advantageous for the application in
quantum communication systems [29–32]. Here, we report on
the experimental observation of this transition. We perform a
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FIG. 1. Schematic level scheme illustrating the [Xe]4 f 12

(3H6)6s2 → [Xe]4 f 11((4I15/2 )0)5d (5D3/2 )6s2(15/2, 3/2)0
7 inner-shell or-

bital transition at 1299 nm (|g〉 → |e〉) and the [Xe]4 f 12(3H6)6s2 →
[Xe]4 f 12(3H6)6s6p(1P0

1)(6, 1)0
7 transition at 401 nm, used for ab-

sorption imaging. The horizontal lines indicate the energy levels
for |g〉 (blue, even parity), |e〉 (red, odd parity), and the state at
401 nm (black, odd parity). [Xe] stands for the electron configuration
of xenon. The insets illustrate the electron configurations. The grey
shaded boxes represent the Zeeman manifold for |g〉 and |e〉. Energies
are not to scale.

careful experimental survey and characterization of the 1299-
nm transition, realizing the first crucial step towards extended
applications, e.g., to explore novel few and many-body phe-
nomena in dipolar or large spin systems.

We experimentally observe the transition at 1299 nm for
the bosonic isotopes 164Er, 166Er, 168Er, and 170Er and for
the fermionic isotope 167Er. We perform high-resolution spec-
troscopy to determine the gJ ′ factor of the excited atomic
state (|e〉) and to measure the frequency shift for the four
bosonic isotopes. We further demonstrate coherent control
of the atomic state and measure an excited-state lifetime of
178(19) ms. We carry out trap frequency measurements to
determine the atomic polarizability of the excited state relative
to the ground state with the trapping light at 532.2 nm. As
we vary the polarization of the light we take advantage of the
vectorial term of the atomic polarizability and we are able to
get close to a magic-wavelength condition, where the ground
state (|g〉) and |e〉 feature the same polarizability. We finally
present theoretical calculations of the atomic polarizability
based on a sum-over-states formula and report on several
alternative options for magic wavelengths.

II. EXPERIMENTAL SETUP

We search for the narrow inner-shell transition by per-
forming spectroscopic measurements on a trapped quantum-
degenerate erbium gas. Our experimental procedure to create
an erbium Bose-Einstein condensate (BEC) follows Ref. [33].
In brief, after laser cooling in a magneto-optical trap, we load
the atoms into a crossed optical dipole trap (ODT) operating
at 1064 nm and perform evaporative cooling down to quantum

degeneracy. The BEC typically contains N = 1–3×104 atoms
with BEC fractions ranging from 30–80%, depending on the
isotope choice. For the fermionic 167Er isotope, we obtain a
degenerate quantum gas of N = 2×104 atoms at a tempera-
ture of T ≈ 0.5TF , where TF is the Fermi temperature. During
the evaporation, a homogeneous magnetic field B is applied
to ensure that the atomic cloud remains spin-polarized in the
lowest Zeeman level mJ = −6 (mF = −19/2) for the bosonic
(fermionic) isotopes.

The light for driving the narrow inner-shell transition is
generated from an external-cavity diode laser (ECDL) oper-
ating at 1299 nm. We determine the absolute frequency of
the laser by measuring the frequency-doubled light with a
calibrated wavemeter [34], which has an accuracy of 60 MHz.
For our coarse spectroscopy, we use the wide tunability of
the ECDL via the control of a piezoelectric element, which
allows us to change the laser frequency. Furthermore, we can
narrow the laser linewidth and stabilize the frequency using
a high-finesse reference cavity made of ultralow expansion
glass. The reference cavity has a free spectral range (FSR)
of 1.4972462(3) GHz and finesse of about 175000. The stabi-
lized laser system has an Allan deviation of 3.1×10−15 over
an observation time of 1 s. The coherence time is extracted
from the phase noise power spectral density and corresponds
to 96 ms [35]. We measure a linear frequency drift of the high-
finesse cavity of 4.34(7) kHz/day. In the experiment, we use
the frequency stabilized configuration for the high-resolution
spectroscopy.

III. COARSE SPECTROSCOPY

In the 1960s, the atomic spectra of lanthanides began to
attract interest. Absorption lines were observed using King’s
furnace or oxyacetylene flames in the range between 650 to
250 nm [36,37]. In early spectroscopic works, the configu-
ration of the low-lying energy levels, and particularly that
of the odd parity states, was not known. The first work to
identify the odd-parity level 4 f 115d6s2—i.e., ortho-erbium
ground state—as the lowest-lying configuration above |g〉 was
Ref. [38]. In this configuration, the angular momentum J1 =
7/2 of the 4 f 11 core couples via J1 − j coupling to the j of the
5d electron, which leads to a total of 10 fine structure levels
with J ranging from 5 to 10. The assignment of the fine struc-
ture levels has been deduced by analyzing energy differences
between absorption lines using a spectroscopic-level search-
ing algorithm. The NIST database reports the energies of the
corresponding fine-structure levels, referring to unpublished
measurements from mid 70 s [39]. For our level of interest
|e〉 = 4 f 11((4I15/2 )0)5d (5D3/2 )6s2(15/2, 3/2)0

7, the wavenumber
given by NIST [40], not accounting for the isotope shift, is

ν̄NIST = 7696.956 cm−1. (1)

To the best of our knowledge, prior to this paper, there has
been no direct measurement of the 1299-nm transition. Our
ultracold quantum gas provides a new opportunity to observe
and characterize this transition.

We start our search of the line by performing a coarse
spectroscopy over a broad frequency range around ν̄NIST

(corresponding to νNIST = 230.738 THz). After preparing an
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FIG. 2. Coarse spectroscopy results for the four bosonic isotopes
164Er, 166Er, 168Er, and 170Er at B = 1.355(5) G and for the fermionic
isotope 167Er at B = 0.52(5) G. The normalized atom number in
|g〉 is plotted versus the laser frequency, which is controlled by the
piezoelectric element of the ECDL. The atom number is normalized
to the moving median formed by 21 data points.

optically-trapped ultracold erbium gas in |g〉, we shine the
1299-nm spectroscopy light on the sample. The spectroscopy
beam has a peak intensity of Ipeak ≈ 0.8 W/cm2 and a 1/e2

waist of about 110 μm. The irradiation time is 100 ms,
during which we sweep the laser frequency with an ampli-
tude of about ±40 MHz. After irradiation, we release the
atoms from the trap for a free expansion of 30 ms. We
record the number of remaining |g〉 atoms by performing
standard absorption imaging using resonant light at 401 nm
(see Fig. 1).

We record the absorption spectrum by repeating the mea-
surement over a wide frequency range with a step size
of 40 MHz. Figure 2 summarizes our results for the four
most abundant bosonic erbium isotopes (164Er, 166Er, 168Er,
and 170Er) and for the fermionic 167Er isotope. As ex-
pected from their zero nuclear spin (I = 0), each bosonic
isotope exhibit just one resonant absorption line, detected
as a sharp dip in the number of |g〉 atoms when vary-
ing the 1299-nm laser frequency. For the fermionic 167Er
isotope, possessing a hyperfine structure (I = 7/2), we iden-
tify three resonances. We attribute the three resonances to
the transitions |F = 19/2〉 → |F ′ = 21/2〉, |F = 19/2〉 →
|F ′ = 19/2〉, and |F = 19/2〉 → |F ′ = 17/2〉, respectively.
Notably, at the resonance positions, the population of |g〉
reaches values below 0.5, indicating an underlying loss mech-
anism, such as heating from a reduced trapping potential for
|e〉 or an interaction-based loss processes.

IV. HIGH-RESOLUTION SPECTROSCOPY

Thanks to the coarse spectroscopy measurements, we can
now restrict the frequency region of interest and perform a
spectroscopy survey with a much higher spectral resolution
and lower laser intensity, allowing also to resolve the magnetic
Zeeman sublevels.

For this, we stabilize the laser frequency to the high-finesse
reference cavity and then precisely tune the laser frequency
using an acousto-optical modulator. The recorded absorption
spectra have a step size ranging from 1 to 8 kHz, depend-
ing on the measurement. Moreover, the spectroscopy is now
performed with a free-falling gas to eliminate possible ac
Stark shifts, eventually caused by the ODT light at 1064 nm.
Therefore, after sample preparation, we switch off all trap-
ping lights, and then irradiate the sample with a 1299 nm
spectroscopy pulse of 1 ms, corresponding to a Fourier lim-
ited linewidth of 800 Hz. The pulse has a peak intensity
of Ipeak ≈ 25 mW/cm2. To minimize the possible frequency
shifts caused by the Doppler effect in a free-falling sample,
the 1299-nm laser beam propagates in a plane orthogonal to
the vertical direction, defined by gravity. The quantization
axis, defined by our bias magnetic field, is oriented along the
vertical direction. The light contains contributions from all
light polarizations, such that the 1299-nm beam can induce
σ+, σ−, and π transitions; see inset in Fig. 3(a).

Figure 3(a) shows the ground-state population for the 168Er
isotope as a function of the laser detuning, plotted with respect
to the central frequency of the π transition. We clearly observe
three resonant dips in the ground-state population, corre-
sponding to the transitions from the ground-state level mJ =
−6 to the excited Zeeman sublevels mJ ′ = −7, −6 and − 5.
We extract the center frequency and the transition linewidth
by fitting the spectroscopy signals with a Lorentzian function.
The extracted linewidths are 2.4(1) kHz and 2.5(1) kHz for
the π and σ+ transition and 20(1) kHz for the σ− transition.
The different linewidths of the spectroscopy resonances can
be explained by a power broadening effect, due to the different
Clebsch-Gordan coefficients of the magnetic sublevels, and
the composition of the light polarization.

We use the wavemeter to determine the absolute wavenum-
ber as

ν̄168 = 7696.955(2) cm−1. (2)

Our measurement is consistent with the value reported in
the NIST database [40] [see Eq. (1)]. The accuracy of the
absolute wavenumber is limited by the wavemeter. However,
our spectroscopy measurement has a precision of about 2 kHz,
which provides the opportunity to improve the accuracy of
the absolute frequency by several orders of magnitude using
advanced measurement techniques, such as frequency combs
[41].

V. LANDÉ FACTOR FOR BOSONIC ISOTOPES

From the observed Zeeman structure in the bosonic iso-
topes, we can extract the Landé gJ factor. This is an important
quantity, e.g., to describe the atomic interaction with an ex-
ternal magnetic field, to describe the interaction between
different atoms via their magnetic dipoles, and to benchmark
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FIG. 3. (a) High-resolution spectroscopy of 168Er at B =
1.358(2) G, unveiling the σ−, π , and σ+ transition (|mJ = −6〉 →
|mJ ′ = −7〉, |mJ = −6〉 → |mJ ′ = −6〉, and |mJ = −6〉 →
|mJ ′ = −5〉). The normalized population in |g〉 is measured against
the laser frequency relative to the frequency position of the π

transition. (b) Measured gJ ′ factor for the four bosonic isotopes
for the different atomic mass numbers. The error bars denote the
1σ -standard deviation. The red solid line represents the weighted
mean of the experimental data and the grey shaded area corresponds
to the combined standard deviation. The black solid lines represent
the gJ ′ factor calculated using our semi-empirical method and the
value given in the NIST database [40].

atomic spectrum calculations. Here, we use the relative fre-
quencies of the π and σ+ transitions to determine the value
of the gJ ′ factor for the excited state. In small magnetic fields,
the Zeeman splitting is linear and the transition frequencies
can be written as

νπ = ν0 − mJ (gJ − gJ ′ )μBB/h, (3)

for the π transition and

νσ+ = ν0 − [mJgJ − (mJ + 1)gJ ′ ]μBB/h, (4)

for the σ+ transition, where ν0 is the absolute transition fre-
quency at B = 0 G, μB is the Bohr magneton and h is the
Planck constant. By taking the difference of Eq. (4) from
Eq. (3) one obtains

gJ ′ = (νσ+ − νπ )h

μBB
, (5)

which allows us to extract the value of gJ ′ , where the uncer-
tainties are arising from the measured frequencies νπ , νσ+,
and the applied B.

We calibrate B, before and after each spectroscopic mea-
surement, by driving the atomic radio-frequency transition of
the atoms in |g〉 from mJ = −6 → mJ = −5. We evaluate
possible drifts of B from these spectroscopy measurements
and estimate them to be ≈1 mG. This uncertainty on B

TABLE I. Isotope shifts for three bosonic isotopes in dependence
of the 168Er isotope. The error bars denote the statistical error, mainly
given by uncertainties of B. Systematic errors are not taken into
account.

isotope pair ν0 − ν168
0 (MHz)

164−168 –2732.290(3)
166−168 –1371.710(3)
170−168 1414.920(5)

represents the dominant limitation on the precision of our
measurements.

Figure 3(b) shows the experimentally extracted values of
the gJ ′ factor as a function of the isotope mass number for the
four bosonic isotopes. We find that, as expected, the values for
the gJ ′ factor are the same within one standard deviation for
all four isotopes. We combine the results by calculating the
weighted mean and determine the gJ ′ factor of |e〉 to

gJ ′ = 1.2599(5). (6)

The individual gJ ′ factors are weighted by their standard de-
viation and the final error corresponds to the combined 1σ

standard deviation. We compare our experimentally deter-
mined gJ ′ factor to the value specified in the NIST database
[40], gNIST

J ′ = 1.266, and find agreement at the 1% level. A
careful study of systematic effects such as calibration errors
on the magnetic field or collisional shifts (not included in the
presented uncertainty) could refine this comparison further,
providing a useful benchmark for atomic structure calcula-
tions.

VI. ISOTOPE SHIFT

In addition to the gJ ′ factor, the high-resolution spec-
troscopy allows us to extract the isotope shift between the
four bosonic isotopes with high precision. Because the π

transition is less sensitive to magnetic field fluctuations, we fix
B and, with the knowledge of the FSR, determine the relative
frequency difference directly from the individual transitions.
Table I gives the isotope shifts relative to the transition fre-
quency of the 168Er isotope.

At leading order, isotope shifts are caused by two effects,
the field shift and the mass shift, which arise from the change
of the nuclear size and the mass, respectively. Here, for the
involved 4 f → 5d transition, both of the contributions are
comparably large [42,43]. Isotope shifts of two different tran-
sitions, plotted against each other, follow at leading order a
linear dependence, which is referred to as King’s linearity
[44]. Violations of the linearity can provide an exceptional
insight into intranuclear interactions and can help to shed light
on processes that are not described by the current theory of
the standard model [45–50]. The availability of four isotopes
that have zero nuclear spin and a large number of different
narrow transitions make erbium a potential candidate for in-
vestigations along this route. In particular, erbium features
further narrow transitions that involve the excitation of an
electron from the 4 f orbital to the 5d orbital. Consequently, in
combination with our transition at 1299 nm, the nonlinearity
might be less sensitive to field shifts induced by different
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electron configurations and therefore interesting for future
investigations [45,46,48].

VII. COHERENT CONTROL AND LIFETIME
MEASUREMENTS

An important opportunity that comes along with narrow
line transitions and plays a fundamental role, e.g., in quantum
information and communication protocols, is the possibility
to coherently control the atomic state. To demonstrate the
ability to drive coherent excitations, we measure Rabi oscil-
lations on the closed σ− transition for a thermal cloud of the
168Er isotope. We use a thermal cloud to reduce the effect of
interactions, by allowing for lower densities. From theoreti-
cal calculations (see description in Sec. VIII), it is expected
that the atomic polarizability of atoms in |e〉 is very low,
or even negative at 1064 nm, depending on the polarization
of the trapping light. Therefore, we transfer the atoms after
evaporation into a crossed ODT that is created by two inter-
secting laser beams at 532.2 nm and 1570 nm, resulting in trap
frequencies of (ωx, ωy, ωz ) = 2π [232(6), 117(7), 209(3)] Hz
for the ground-state atoms. At this stage, we measure 2×104

atoms at a temperature of T ≈ 700 nK, corresponding to a
peak density of about 9×12 cm−3. After the preparation of
the atomic cloud, we shine a resonant narrow-line laser with
a peak intensity of about 4.9 W/cm2 for a pulse duration of
tpulse onto the atomic sample and measure the atom number in
|g〉 after a time of flight of 10 ms.

Figure 4(a) shows the population in |g〉, normalized to the
maximum atom number as a function of tpulse. We observe a
damped oscillation of the population in |g〉, which is well de-
scribed via pg(t ) = 0.5e−t/τosc cos(�Rt ) + 0.5, where �R is the
Rabi frequency and τosc is the 1/e decay time of the contrast of
the oscillation. We find that �R = 2π×50.02(8) kHz, which
corresponds to a normalized Rabi frequency of �norm.

R =
2π×0.76(6) kHz/

√
mW/cm2. For the decay time of the

contrast we find τosc = 192(20) μs, indicating a strong deco-
herence mechanism. Possible mechanisms that might lead to
the decoherence are, e.g. atomic interactions, intensity noise
on the trapping light, intensity inhomogeneities of the probe
light over the atomic cloud, or fluctuations of the magnetic
field. Nonetheless, the coherent control allows us transfer
atoms from |g〉 to |e〉 with an efficiency >97%.

The ability to transfer atoms from |g〉 to |e〉 with high effi-
ciency enables us to measure the lifetime of atoms in |e〉. At
high densities we observe a short lifetime of the sample in |e〉,
suggesting a density-dependent loss mechanism, similarly to
Ref. [51]. Therefore, we reduce the atom number to N ≈ 300
atoms by using a shorter loading time of the magneto-optical
trap and we stop the evaporative cooling process at an ear-
lier stage, leading to a temperature of T ≈ 1 μK. Here, we
obtain a peak number density of about 7.5×1010 cm−3. In
this regime of low density, radiative losses dominate over
few-body collisional losses.

To measure the lifetime of |e〉, we carry out two comple-
mentary measurements. First, we perform a π pulse to transfer
|g〉 atoms to |e〉 with high efficiency. To obtain a pure sample
of |e〉 atoms, we remove the small remaining fraction of |g〉
atoms with a resonant pulse at 401 nm. Note that, the light at
401 nm is not resonant for atoms in |e〉. We then measure the
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FIG. 4. (a) Coherent Rabi oscillations for 168Er on the
|mJ = −6〉 → |mJ ′ = −7〉 transition. Shown is the normalized atom
number in |g〉 against the duration of the laser pulse. The dashed
line represents a fit of a damped sinusoidal oscillation to the ex-
perimental data points. (b) Schematic illustration of the two applied
measurement sequences to extract state populations (see main text).
(c) blue circles [red squares] represent the atom number in |g〉[|e〉] in
dependence of the hold time for the measurements sequence (i) [(ii)].
The grey diamonds represent the total atom number. The solid lines
are exponential fits to the experimental data. Error bars denote the
standard error of 4 (a) and 10 (c) repetitions.

lifetime of the excited sample in two independent measure-
ments, (i) the number of atoms in |g〉, which decayed from |e〉
due to spontaneous emission, and (ii) the atomic population in
|e〉 by applying a second π pulse to invert the populations in
|e〉 and |g〉 in order to directly measure the excited-state atoms;
see Fig. 4(b).

Figure 4(c) shows the measured atom number for both
measurement sequences at different holding times thold. We
observe a decay of the atom number in |e〉, which is consistent
with the simultaneous growth of the atom number in |g〉. Note
that, the sum of the atom number in both states remains con-
stant over the observed timescale, indicating that atoms in |e〉,
indeed, decay dominantly to |g〉. We extract the lifetime, for
both measurement protocols, by fitting an exponential func-
tion N (t ) = ae−t/τe + d to the non-averaged atom numbers.
Here, a denotes the amplitude and d the offset of the growth
(decay) of the atom number in |g〉 (|e〉). The characteristic
time τe represents the lifetime of |e〉. We extract a lifetime of
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162(23) ms [212(33) ms] through the measurement sequence
(i) [(ii)]. We combine both results by calculating the weighted
mean and obtain a mean lifetime of

τe = 178(19) ms. (7)

This lifetime corresponds to a natural linewidth of 0.9(1) Hz,
which is in agreement within error bars with the theoreti-
cal predicted value of 2(1) Hz in Ref. [23]. Note that, the
measured lifetime is consistent with the natural linewidth
predicted from �R determined above.

VIII. THEORETICAL PREDICTIONS

We compare our experimental findings with the results
of a semi-empirical model, which has previously been very
successful in predicting the properties of broader optical tran-
sitions in erbium and dysprosium [52,53]. Our calculations
are based on the semi-empirical method provided by the
COWAN suite of codes [54,55], and extended by us [52].
In a first step, ab initio radial wave functions Pn	 for all the
subshells n	 of the considered configurations, with n and 	

being the principal and orbital quantum numbers, are com-
puted with the relativistic Hartree-Fock (HFR) method. Those
wave functions are then used to calculate energy parameters
that are the building blocks of the atomic Hamiltonian. In
a second step, the energy parameters are adjusted so that
the eigenvalues of the Hamiltonian best fit the experimental
energies of the NIST database [40], using Kramida’s version
of the least-square fitting COWAN code RCE [55]. The Pn	

wave functions also serve to calculate the mono-electronic
transition integrals 〈n	|r|n′	′〉 = ∫

drPn	(r)rPn′	′ (r), that are
the building blocks of Einstein coefficients for spontaneous
emission Aik . In a third step, the 〈n	|r|n′	′〉 integrals are ad-
justed to minimize the difference between experimental and
theoretical Aik coefficients [52].

For the even-parity levels of erbium, we use the same
energy parameters as Ref. [56]. Briefly, the even electronic
configurations are separated into three groups:

4 f 126s2 + 4 f 125d6s + 4 f 116s26p,

4 f 126s2 + 4 f 115d6s6p,

and

4 f 126s2 + 4 f 126s7s + 4 f 126s6d + 4 f 126p2.

Each group is associated with a different least-square fitting
calculation with experimental levels belonging to the corre-
sponding configurations.

Compared to Refs. [56,57], the odd-parity level calcu-
lations have been improved by adding some high-lying
experimental energy levels that were previously excluded
from the fitting procedure, as well as incorporating a larger
number of free configuration-interaction parameters into the
fitting procedure. The following configurations are included in
the calculation: 4 f 115d6s2, 4 f 115d26s, 4 f 126s6p, 4 f 125d6p,
and 4 f 136s. The latter is included for technical purpose, but
does not play a physical role. The fitting procedure is per-
formed using a total of 30 free groups of parameters and
219 levels. The standard deviation between experimental and
calculated energies is equal to 53 cm−1, which is satisfactory

for a semi-empirical calculation. Details on the parameters
for the first four odd parity configurations are given in the
Appendix.

The 〈n	|r|n′	′〉 transition integrals were adjusted using
the set of experimental Aik coefficients of Ref. [58], es-
pecially the transitions involving levels of the ground-state
configuration [Xe]4 f 126s2. Following Ref. [52], we seek to
minimize the standard deviation σA on Einstein coefficients
Aik [52]. Because the latter is poorly sensitive to 〈4 f |r|5d〉,
we could not find a value of that integral minimizing σA,
we have taken a scaling factor with respect to the HFR in-
tegral equal to f4 f ,5d = 0.95, following previous works on
dysprosium [53] and holmium [59]. We applied the fitting
procedure on 〈6s|r|6p〉, and found f6s,6p = 0.786. We have
fitted 77 experimental lines and found a standard deviation
σA = 8.085×106 s−1.

With this optimized set of energies and transition inte-
grals, we have calculated the polarizabilities of the ground
and excited states using the sum-over-state formula coming
from second-order perturbation theory. The polarizability of
the excited level also depends on 〈5d|r|6p〉, for which we took
a scaling factor of 0.8.

From our theory we obtain a wavenumber of ν̄ th =
7729.3 cm−1, a gJ ′ factor of gth

J ′ = 1.2622, and an excited-state
lifetime of τ th = 602 ms. For ν̄ th and gth

J ′ we find satisfac-
tory agreement with the values reported from the current
experimental work. Note that, by included least-square fitted
energy parameters in the theoretical calculations (compared
with Ref. [60]), we obtain better agreement with the exper-
imental data. The extracted lifetime is about a factor of 3
longer compared to the experimentally measured value. This
discrepancy comes from the fact that the underlying transition
dipole moment involves small components in the eigenvector
associated with level |e〉. Those small components are more
difficult to optimize, as they are less affected by the least-
square fitting procedure on energies.

Figure 5(a) shows the calculated atomic polarizability α(ω)
for |e〉 in a broad wavelength range from 350 nm to 1500 nm.
The polarizability spectrum becomes very dense at lower
wavelengths. The background value of α(ω) is dominantly
positive; however, a strong transition at around 1140 nm
causes a negative value of α(ω) around 1064 nm, commonly
used for optical dipole traps. Further, this strong transition
creates two interesting situations appearing at 1010 nm and
1070 nm. Here, while α(ω) is finite for |g〉, α(ω) of |e〉 is either
0 (1010 nm) or has the same absolute value with opposite
sign (1070 nm). These circumstances are beneficial for the
realization of spin-dependent lattice configurations [61]. Due
to the weak coupling to |g〉, the effect of the transition at
1299 nm is not visible in this plotting range.

IX. MAGIC-WAVELENGTH CONDITIONS

A very important ingredient for the coherent control of our
two-level system is the atomic polarizability of each state,
α(ω), and their ratio α|e〉/α|g〉. Figures 5(b)–5(d) show exam-
ples of interesting wavelength regions in which, for a given
light polarization (π ), the |g〉 and |e〉 state polarizabilities
cross, meaning that atoms in both states will experience the
same optical trapping potential. These specific values of the
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FIG. 5. (a) Theoretically calculated α(ω) for |e〉 as a function of the wavelength λ for π -polarized light. [(b)–(e)] Zoom-in into specific
wavelength regions showing α(ω) for |e〉 (red) and |g〉 (blue). The green stars indicate possible magic wavelengths. The dashed black lines in
(e) denote the wavelength of 1010 nm, 1064 nm, and 1070 nm.

wavelength realize the so-called magic condition. Our calcu-
lation shows wavelength values for which both red-detuned
[Figs. 5(c) and 5(d)] or blue detuned magic [Fig. 5(b)] trap-
ping is possible. Moreover, Fig. 5(e) shows a case in which the
polarizability of |g〉 and |e〉 has opposite sign. This situation
might be interesting to create an effectively subwavelength
lattice in which |g〉 and |e〉 atoms are spaced by λ/4.

The existence of such type of crossings is a rather general
feature also in more simpler atomic species. Additionally,
α|e〉/α|g〉, and thus the exact crossing position, can be tuned
by changing the light polarization or the magnetic-field
orientation [56,62–64]. These features, named in analogy
“magic”-polarization condition [64,65], originate from the
vectorial and tensorial part of the atomic polarizability, fol-
lowing the equation:

α(ω) = αs(ω) + i
[u∗ × u] · J

2J
αv (ω)

+J (J + 1) − 3m2
j

J (2J − 1)

1 − 3 cos2 θp

2
αt (ω). (8)

Here, αs(ω), αv (ω), and αt (ω) are the scalar, the vectorial, and
the tensorial polarizabilities and u is the polarization vector of
the laser field. The angle θp defines the orientation of u with
respect to B.

We aim at exploring the impact of the vectorial polariz-
ability on α|e〉/α|g〉 for a commonly used trapping wavelength
of 532.2 nm. As for Sec. VII, we prepare our |g〉 atoms in a
crossed optical dipole trap, with a horizontal (vertical) beam
operating at 532.2 nm (1570 nm). For reference, we first excite
the center-of-mass (COM) motion and extract the vertical trap
frequency (mainly determined by the light at 532.2 nm) of
the atoms in |g〉; see Fig. 6(a). We then repeat the same trap-
frequency measurements for atoms in |e〉 and use the relation
of α|e〉/α|g〉 = (ω|e〉/ω|g〉)2 [63].

To study the impact of the vectorial polarizability, we mea-
sure α|e〉/α|g〉 for different polarization of the light at 532.2 nm.
In each measurement, θp = 90◦, while the angle φ defining u
is varied [66]; see inset in Fig. 6(b). Figure 6(b) summarizes
our results. We observe a periodic behavior of α|e〉/α|g〉 as a
function of φ, which reaches its maximum for σ−-polarized
light (φ = 45◦). At this angle, we find α|e〉/α|g〉 = 0.98(3), which
is consistent within the experimental uncertainty to the magic-
trapping condition. The figure also shows our theoretical
calculation, which qualitatively reproduces the experimen-
tal values, although with a smaller amplitude, which might
indicate a shift of the close by transition as well as an under-
estimation of the transition strength. At φ = 45◦, the theory
gives (α|e〉/α|g〉)theo = 0.97, and predicts crossings at 528.9 nm
and 532.5 nm, which are interesting options to explore with
tunable laser systems. The polarizabilities for the special cases
of σ−- and σ+-polarized light are shown in Fig. 6 for an
extended wavelength region.

We estimate from our theoretical calculations, that the rela-
tive change of α|e〉 − α|g〉 for φ = 45◦, in linear approximation,
follows a slope of about 4 a. u./nm at 528.9 nm and a slope of
about 80 a. u./nm at 532.5 nm. This implies that a sufficient
laser stability to resolve our observed linewidth can be reached
with standard laser locking techniques. Further, the measured
BEC lifetime at 532.2 nm is about 2 s, which suggests a low
photon scattering rate. Furthermore, as the detuning to the
nearby ground-state transition is increased, for the crossing
at 528.9 nm a potentially lower scattering rate can be found
[see Fig. 6(c)].

X. CONCLUSION

In conclusion, we have observed the narrow inner-shell
orbital transition at 1299 nm for the four bosonic, as well
as for the fermionic isotope. We characterized the transition
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FIG. 6. (a) Center position of the thermal cloud in dependence
of the hold time for |g〉 (blue) and |e〉 (red) for the case of linearly
polarized light with u pointing along y and B aligned opposite to
the propagation axis of the 532.2 nm trapping light. Atoms are
transferred to |e〉 following the protocol (ii) described in Sec. VII.
(b) Polarizability ratio α|e〉/α|g〉 for different polarizations of the trap-
ping light defined by the angle φ between u and the optical axis of
the λ/4-waveplate. The black solid line is a guide to the eye based on
a sinusoidal fit to the experimental data and the grey solid represents
theoretical results obtained from the sum-over-states method. The
inset illustrates the experimental configuration for the shown data.
(c) Theoretically calculated α(ω) for |e〉 (red) and |g〉 (blue) in their
lowest magnetic sublevels as a function of the wavelength λ for σ−-
(solid line) and σ+-polarized (dashed line) light. The green solid line
indicates the wavelength for the measurement in (b) and the green
stars indicate possible magic wavelengths for σ−-polarized light.

by measuring the gJ ′ factor and the atomic polarizability at
532.2 nm, which we compare to a semi-empirical model.
Further, we demonstrated the ability to coherently control the
atomic state. The narrow transition, at a wavelength within
the telecom window, with a linewidth of 0.9(1) Hz and a
related long lifetime of 178(19) ms, represents a very versatile
tool with outstanding potential for a broad range of possible
applications.

For the realization of efficient long-distance quantum
communication, atom-photon interfaces at wavelengths that
are compatible with telecom wavelengths are highly desired
[29–31]. To date, most of the existing approaches rely either

on frequency conversion of the photons [67,68], leading to
undesired noise and reduced efficiency, or suffer from vari-
ous other dephasing mechanisms [69,70]. Here, our transition
at 1299 nm, lying within the O-band of the telecom wave-
length architecture, is a potential candidate to circumvent
these issues. Finally, the photon storage time can be drastically
improved by collective scattering in ordered atomic arrays,
exceeding the natural lifetime [71,72].

The relatively long wavelength of this transition may also
provide a favorable platform for studies of collective scatter-
ing from ordered atomic samples. Such effects, which include
geometry-dependent enhancement or suppression of emission
[73,74], can be more significant when the spacing between
atoms is small relative to the transition wavelength. For our
266 nm spacing, typical of lattice confinement with 532 nm
light [75], this condition is well met in our system, in con-
trast to the more common situation present in alkaline atoms
where the wavelength of trapping light typically exceeds the
wavelength of the scattering transition.

Additionally, the advantages of encoding qubits in the
ground and the metastable state and the possibility for inde-
pendent control of atomic motions by lattice light is promising
for quantum computational tasks [20–22]. Moreover, the
contact interaction can be tuned using the technique of a
narrow-line optical Feshbach resonance, where the system
suffers only weak atom loss [7–9].

Finally, this transition enables the coherent control of mag-
netic Zeeman levels for dipolar bosonic atoms, which has been
elusive so far, due to the absent hyperfine interactions [76].
The 13 magnetic Zeeman levels in the ground state of erbium

TABLE II. Parameter names, constraints (see text), fitted values
and scaling factors fX = Xfit/XHFR, for the 4 f 115d6s2 and 4 f 115d26s
configurations of neutral Er. All parameters are in cm−1.

Parameter X Constraint Xfit fX Xfit fX

4f11 5d 6s2 4f11 5d2 6s

Eav 464120 65531.6
F 2(4f 4f) r1 981776 0.761 98004.7 0.761
F 4(4f 4f) r2 692640 0.856 69134.0 0.856
F 6(4f 4f) r3 500680 0.861 49972.2 0.861
α r4 200 20.0
β fix –6500 –650.0
γ fix 20000 2000.0
F 2(5d 5d) 21668.3 0.663
F 4(5d 5d) 17208.2 0.831
ζ4 f r5 23898 0.984 2387.8 0.984
ζ5d r6 7882 0.831 652.6 0.831
F 1(4f 5d) r7 7417 741.7
F 2(4f 5d) r8 157117 0.775 13597.8 0.775
F 4(4f 5d) r9 105582 1.149 8970.9 1.149
G1(4f 5d) r10 50541 0.580 4325.8 0.580
G2(4f 5d) r11 17174 1717.4
G3(4f 5d) r12 64003 0.928 5422.6 0.928
G4(4f 5d) r13 16306 1630.6
G5(4f 5d) r14 38097 0.732 3216.7 0.732
G3(4f 6s) r15 1254.3 0.844
G2(5d 6s) r17 11696.8 0.609
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can be employed as spin states and allow for the realization
of large bosonic spin systems with dipolar interactions. In
combination with optical lattices, this enables the possibil-
ity to study many-body dynamics in extended Bose-Hubbard
models [77,78]. Generally, in such large spin systems, the long
lifetime of the excited state is helpful for the realization of
advanced, spin-resolved imaging-shelving techniques [79,80].
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APPENDIX

Odd-parity energy parameters

Here we present the parameters of the first four odd-parity
configurations of neutral erbium. The ones of the 4 f 136s
configuration are not shown, as the latter does not play any
physical role in the level interpretation.

Tables II and III show the one-configuration parameters,
like the direct F k , exchange Gk , or spin-orbit ζn	 integrals.
Table IV shows the configuration-interaction ones. We also
give the scaling factor fX = Xfit/XHFR between the fitted and
ab initio value of the parameter X . During the fitting pro-
cedure, some groups of parameters are constrained to vary
within the same scaling factors; such groups are characterized
by the same fX = rn value in the second column of Tables II–
IV. The word “fix” means that the corresponding parameters
are not adjusted. Finally, we use so-called “effective” param-
eters, like α, β, γ , or F1(4 f 5d ), which cannot be calculated
ab initio, but which are there to compensate the absence of
electronic configurations not included in the model. Their
initial values are known from previous studies.

TABLE IV. Configuration-interaction parameters: parameter
names, constraints (see text), fitted values and scaling factors fX =
Xfit/XHFR, for odd-parity configuration pairs of neutral Er. All param-
eters are in cm−1.

Parameter X Constraint Xfit fX

4f11 5d 6s2 - 4 f 11 5d2 6s

R2 (4f 6s, 4f 5d) r21 –799.8 0.852
R3 (4f 6s, 4f 5d) r21 1128.5 1.465
R2 (5d 6s, 5d 5d) r17 –13663.3 0.621

4f11 5d 6s2 - 4f12 6s 6p

R1 (5d 6s, 4f 6p) r20 –3173.6 0.461
R3 (5d 6s, 6p 4f) r20 –679.9 0.461

4f11 5d2 6s - 4f12 6s 6p

R1 (5d 5d, 4f 6p) r22 2405.6 0.647
R3 (5d 5d, 4f 6p) r22 643.7 0.647

4f11 5d2 6s - 4f12 5d 6p

R1 (5d 6s, 4f 6p) r22 –2536.8 0.427
R3 (5d 6s, 4f 6p) r22 –564.5 0.427

4f12 6s 6p - 4f12 5d 6p

R2 (4f 6s, 4f 5d) r23 –5359.9
R3 (4f 6s, 5d 4f) r23 2758.3
R2 (6s 6p, 5d 6p) r22 –6833.7
R1 (6s 6p, 6p 5d) r22 –7463.2
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An accurate knowledge of the scattering length is fundamental in ultracold quantum gas experiments and
essential for the characterization of the system as well as for a meaningful comparison to theoretical models.
Here, we perform a careful characterization of the s-wave scattering length as for the four highest-abundance
isotopes of erbium, in the magnetic field range from 0 to 5 G. We report on cross-dimensional thermalization
measurements and apply the Enskog equations of change to numerically simulate the thermalization process and
to analytically extract an expression for the so-called number of collisions per rethermalization (NCPR) to obtain
as from our experimental data. We benchmark the applied cross-dimensional thermalization technique with the
experimentally more demanding lattice modulation spectroscopy and find good agreement for our parameter
regime. Our experiments are compatible with a dependence of the NCPR with as, as theoretically expected in
the case of strongly dipolar gases. Surprisingly, we experimentally observe a dependency of the NCPR on the
density, which might arise due to deviations from an ideal harmonic trapping configuration. Finally, we apply a
model for the dependency of the background scattering length with the isotope mass, allowing us to estimate the
number of bound states of erbium.

DOI: 10.1103/PhysRevA.105.063307

I. INTRODUCTION

The high degree of environmental isolation and the high
control over the large parameter-space of ultracold quantum
gases are key for their success [1]. One of the most decisive
properties in determining the many-body phases of a quantum
gas is the interaction force between atoms. Among neutral
particles, it can be isotropic and short range, as in alkali-
metal atoms, and/or anisotropic and long range. Open-shell
lanthanides, such as erbium (Er) and dysprosium (Dy), have
both interactions in place [2]. Their strong magnetic character
is reflected in a large dipole-dipole interaction (DDI), while
the contact potential is governed by the well-known scattering
length, whose value as, as in alkali-metal atoms, can be largely
controlled by so-called Fano-Feshbach resonances [3–5].

Although the concept of the scattering length itself is
well known by now, theoretical challenges to calculate as

depend on the atomic species of interest. For lanthanides,
predicting as remains a major challenge of quantum chem-
istry and microscopic scattering theories [6]. The complexity
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of describing such atoms has several reasons: the multi-
ple valence electrons, the strongly anisotropic orbital shells,
the strong coupling between core and valence electrons,
and the relativistic contributions, also made important by
the large atomic mass. To date, there are still no ab initio
models with the capacity for quantitative predictions, al-
though many general properties of the interaction potentials
(e.g., Born-Oppenheimer potentials) have been studied and
understood [7].

Yet, knowledge of the scattering length remains of prime
importance since it is an essential regulator of few- and
many-body quantum phenomena. For instance, the fascinating
supersolid state, recently discovered in Dy [8–10] and Er [9],
lives in a narrow range of only a few a0 (a0 is the Bohr radius),
and the functional forms of beyond-mean-field corrections,
which are still under discussion [11–14], depend on as in
a subtle way. In the absence of complete microscopic and
ab initio potential models, the study of as in lanthanides,
therefore, relies on experimental investigations and empirical
models.

Several different experimental methods have been applied
in previous works to extract as for Er and Dy. These in-
clude spectroscopy of the molecular binding energy close
to a broad Fano-Feshbach resonance [15,16], the anisotropic
expansion of a thermal gas [17], and the cross-dimensional
thermalization technique [18–21]. Furthermore, for the 166Er
isotope, as has been determined with high accuracy based on
a measurement of the particle-hole excitation gap in the Mott
insulator regime via lattice modulation spectroscopy [22,23].
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These techniques did not always provide consistent values,
opening up a number of fundamental questions, e.g., from the
validity of the additivity of the interaction pseudopotentials
[24–27] to the appropriateness of the Lee-Huang-Yang form
for beyond-mean-field effects [12–14,28].

In this work, we extensively study the scattering length of
the four most abundant bosonic isotopes of erbium (164Er,
166Er, 168Er, and 170Er) and its magnetic-field dependence.
For each isotope, we perform high-resolution Fano-Feshbach
spectroscopy in the low-magnetic-field region (0 to 5 G)
and identify previously unreported scattering resonances. In
this range, we then accurately determine the erbium scatter-
ing length as by developing a model based on the Enskog
equations to extract as from cross-dimensional thermalization
experiments. We benchmark our results with the ones ob-
tained from high-precision lattice-modulation spectroscopy,
which has been previously developed for 166Er [23,29] and
here expanded to 168Er. Finally, from the magnetic-field map-
ping of as, we extract for each isotope an effective background
scattering length abg

s at zero B field and we discuss the results
in the context of the isotope-mass scaling.

II. CROSS-DIMENSIONAL THERMALIZATION

The cross-dimensional thermalization technique is a very
powerful method to experimentally determine the scatter-
ing length. First successfully applied to alkali-metal atoms
[30–33], this technique has proved to be very general and,
more recently, has been used for more complex atomic
species, such as chromium [34], specific isotopes of erbium
[19] and dysprosium [21], and molecular systems [35,36].

Starting from a cold thermal cloud, the basic idea of
the cross-dimensional thermalization method is to excite the
system by increasing the potential energy along one spatial di-
mension of the atomic cloud and to measure the characteristic
time τ that the system needs to re-thermalize in the orthogonal
directions [30]. In the regime of small excitations, for an
atomic cloud at a temperature T and a total atom number N ,
the characteristic time is related to the total scattering cross
section σ̄ by

τ = α

n̄σ̄vr
, (1)

where n̄ is the mean number density

n̄ = Nω̄3

√
8

(
m

2πkBT

)3/2

(2)

and vr is the mean relative velocity for two colliding atoms

vr =
√

16kBT

πm
. (3)

Here, ω̄ is the geometric mean of the harmonic trapping
frequencies, m is the atomic mass, and kB is the Boltzmann
constant. Because multiple collisions, not all contributing
equally to rethermalization, are occurring during the ther-
malization process, the parameter α can be interpreted as a
rescaling of σ̄ and, therefore, as a number of collisions per
rethermalization (NCPR). Experimentally, the knowledge of
α is fundamental for the extraction of the total scattering cross
section.

Equation (1) has two unknown parameters: as and α.
In contrast to alkali-metal atoms, where the scattering is
isotropic, the situation is more complex for dipolar atoms such
as Er and Dy [18,20]. Here, the total cross section for bosons is
not only given by the contact scattering length as, but also by
an additional contribution from the nonisotropic DDI, which
for two atoms at a distance r and polarized by an external
magnetic field B, reads as

Vdd(r, θ ) = μ0μ
2

4π

1 − 3 cos2 θ

|r|3 . (4)

Here, μ0 is the magnetic permeability, μ is the magnetic
dipole moment, and θ is the angle between B and r. Taking
an angular average of the total cross section leads to

σ̄ = 8πa2
s + 32π

45
a2

d, (5)

where ad = mμ0μ
2

8π h̄2 is the dipolar length (ad = 98.2a0 for 166Er),
with h̄ being the reduced Planck constant. Finally, we can
rewrite Eq. (1) as

τ = α

n̄σ̄vr
= α

4Nmω̄
πkBT0

(
a2

s + 4
45 a2

d

) . (6)

The interplay between the isotropic scattering length and the
anisotropic dipolar cross section leads to a dependence of α on
both the dipole orientation θ and as [37]. In the limit of weak
excitation, an analytic form of α(as, θ ) can be found based on
the Enskog equations; see later discussion.

III. EXPERIMENTAL PROCEDURE

In our experiment, we produce a spin-polarized thermal
cloud of Er atoms in the lowest Zeeman sublevel, similarly
to Ref. [38]. In brief, after cooling and trapping the Er atomic
ensemble in a narrow-line magneto-optical trap [39], we trans-
fer the atoms into a crossed optical dipole trap. Here, we
first further cool the atoms via standard evaporative cooling,
and then we tighten the trapping confinement to avoid atom
loss due to residual evaporation. Simultaneously, we ramp
B to the desired value. At this stage we typically reach a
temperature of T = 250–300 nK with N ≈ 1×105. The exact
numbers depend on the isotope choice and the individual
set of measurements. The typical final trap frequencies are
(ωx, ωy, ωz ) = 2π×[65(1), 19(1), 300(2)] Hz. For all sets of
measurements the critical temperature for the onset of Bose-
Einstein condensation, Tc, lies between 150 and 200 nK, such
that T � 1.5×Tc. The orientation of the magnetic dipoles is
controlled by the direction of the polarizing B and is repre-
sented by the angle θ between B and the vertical direction
z, defined by gravity (see inset Fig. 1). We calibrate the
value of B with an accuracy of about 1 mG by driving the
radio-frequency transition between the two lowest Zeeman
sublevels mJ = −6 to mJ = −5.

After preparing the thermal sample, we perform cross-
dimensional thermalization experiments [19]. In particular,
we excite the cloud along the y direction and probe the ther-
malization dynamics in the z direction. Our excitation scheme
relies on a rapid increase in the power of one trapping beam,
leading to a 60% increase of the trapping frequency, while
leaving the other two directions mostly unaffected. We extract
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FIG. 1. Effective temperatures Tz (blue circles) and Ty (red dia-
monds) after the increase of the trapping potential along the weakest
trapping direction y. The measurement was performed at 1 G and
θ = 0

◦
for the 166Er isotope. The red dashed line represents a guide

to the eye. The black solid line denotes the results of the Enskog sim-
ulations for this specific data set. The error bars denote the standard
error for three repetitions. The inset shows a schematic representation
of our experimental system.

the effective temperature Tz (Ty) for a variable in-trap hold
time th from the width of the momentum distribution σz(th)
[σy(th)] after a time of flight of tToF = 25 ms (20 ms). This
scheme, illustrated in the inset of Fig. 1, leads to an out-
of-equilibrium cloud with an effective temperature increase
along y from about 300 to 600 nK.

Figure 1 shows Tz and Ty as a function of th at B = 1 G. As
we excite the system along y, we observe the expected rapid
increase of Ty. After reaching a maximum effective tempera-
ture, Ty starts to decay, and simultaneously Tz increases, both
reaching the same equilibrium temperature and thus showing
thermalization dynamics. We observe oscillations in Ty, which
we attribute to a breathing mode that gets induced by the
excitation. For Tz we observe an exponential-type growth of
the form

Tz(t ) = Tf (1 − �Te−t/τ ). (7)

Here, Tf denotes the final temperature and �T denotes the
temperature increase due to the added energy. However, using
this simple fit we cannot directly extract as as additional
knowledge on α(as, θ ) is needed [see Eq. (6)].

IV. THEORETICAL ESTIMATE OF α(as, θ)

To compute α(as, θ ), we utilize the Enskog equations of
change [40]: a coupled set of differential equations derived in
closed-form for dipolar gases, by linearization of the Boltz-
mann equation, and the assertion of a Gaussian phase-space
distribution [41]. These equations permit an analytic deriva-
tion of α(as, θ ) in the limit of short times and small excitations
[37]. For the current experiment with excitation along y and
thermalization measured along z, the NCPR is described by a
simple analytic formula, which reads

α(as, θ ) = 14
(
45a2

s + 4a2
d

)
252a2

s + 96asad + (3 cos(4θ ) + 13)a2
d

. (8)
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FIG. 2. (a) Dependency of α on θ and as for as = 0a0, 5a0, 10a0,
36.5a0, and 68.3a0. These values are chosen such that the angle
dependence at small as becomes visible. Note that, at 68.3a0 (as at
1 G, see later measurements) the variation of α with θ is strongly
suppressed. (b) α vs as for θ = 0

◦
. The inset shows an enlargement

of the region for as between 0a0 and 400. The gray dashed lines show
the values of α for s-wave and p-wave scattering, respectively.

The quantity α(as, θ ) exhibits an anisotropic character via its
angle dependence, as already observed for dipolar fermionic
atoms [19] and molecules [36].

Figure 2 shows α(as, θ ) as a function of θ [panel (a)]
and as [panel (b)], for our experimental configuration of a
pancake-shaped trap. Figure 2(a) shows that the anisotropic
character of α(as, θ ) competes with the contact one. Indeed,
while for small as (� 10a0), α(as, θ ) exhibits a pronounced
angle-dependence with a maximum at 45◦, for increasing as

such behavior progressively washes out. For as ≈ 70a0, the
thermalization behavior becomes basically independent of θ ;
however, α(as, θ ) acquires a number below the one expected
for purely contact-interacting s-wave collisions. This suggests
faster thermalization for dipolar particles, arising from a more
efficient diversion of velocities of the scattering constituents.
In the experiment, we only measure rethermalization for rel-
atively large values of as � 30a0, and therefore, we are not
sensitive to the angle dependence of α(as, θ ). In the course
of this work, we thus focus on the case θ = 0◦, simplifying
Eq. (8) to

α(as, θ = 0 ◦) = 14
(
45a2

s + 4a2
d

)
252a2

s + 96asad + 16a2
d

. (9)

As shown in Fig. 2(b), after an initial decrease, α(as, 0
◦
)

increases for as � 36.7a0—and thus the thermalization loses
efficiency—moving to the regime of contact-dominated in-
teraction, eventually reaching the α(as, 0

◦
) = 2.5 limit of

nonmagnetic atoms [18,42,43]. We note that, by setting
θ = 0

◦
and ad/as ≈ 2.7, the NCPR is minimized with the

value α ≈ 1.65, indicating highly efficient collisional ther-
malization. This is directly attributed to the innate anisotropic
differential cross section in dipolar bosons [18].
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FIG. 3. Atom-loss spectroscopy (orange circles) as a function of B for a fixed holding time of 250 ms. For each B value, the data point
is an average of three repetitions and it is normalized to the maximum averaged atom number recorded in the explored magnetic-field range.
Further, as extracted from cross-dimensional thermalization measurements using both the Enskog equations (red squares) and the analytic
formula of Eq. (8) (blue diamonds) is shown for 166Er. Additionally aLMS

s (black triangles) values obtained from lattice modulation spectroscopy
measurements are given. The solid black lines represent a fit of Eq. (10) to aLMS

s . Error bars and the shaded area of the fitting results denote the
standard error.

V. MAPPING OF as AS A FUNCTION OF B FOR 166Er

Before taking cross-dimensional thermalization measure-
ments for 166Er, we perform a high-resolution scan of the atom
number as a function of the magnetic field in order to record
the spectrum of Fano-Feshbach resonances, which we know
to be exceptionally dense [4,5]. We record the Fano-Feshbach
spectra in a magnetic field region from 0 to 5 G (see Fig. 3
and Appendix D). In all the measurements the magnetic field
is oriented along z.

We then perform thermalization measurements at values
of the magnetic field, where the system is not dominated by
resonant atom loss. For each thermalization curve, we extract
as using two different approaches, one numerical and one
semianalytical. The first, constitutes a direct fit of the full
Enskog solutions to the experimental data, leaving as as a float
parameter of the theory (see Appendix B for more details).
The second method is based on the exponential growth rate
τ , from Eq. (1), using the analytic expression for α(as, 0 ◦)
in Eq. (9). For the latter, since as is unknown a priori, we
use an iterative approach to determine α(as, 0 ◦) starting from
α(as, 0 ◦) = 1.7. We use the calculated as and the analytic
formula [see Eq. (9)] to obtain a new value for α(as, 0 ◦).
We stop the iteration once the relative change of α(as, 0 ◦) is
� 1×10−7.

Figure 3 summarizes as for 166Er in the region from 0 to
5 G. In the studied B-field regime, the scattering behavior
is essentially dominated by a broad resonance at 3 G and a
second one around B = 0 G. The as extracted from the Enskog
model and the semianalytic one are in very good agreement
with each other, reflecting the strength of the analytic formula
of Eq. (9).

VI. BENCHMARKING WITH LATTICE SPECTROSCOPY

To evaluate the robustness of our approach to extract as, we
benchmark our cross-dimensional thermalization results with
the one obtained using an alternative technique based on lat-
tice modulation spectroscopy (LMS). Such a technique, which
we have developed in the past for 166Er [23,29] and 167Er
[44], is based on the measurement of the on-site interaction—
related to as—of a lattice-confined dipolar gas in a Mott

insulator state. The LMS is able to provide accurate values of
aLMS

s , but at the price of being experimentally more involved
due to its requirements of an optical lattice together with a
highly degenerate sample. Here we compare the values of
as obtained with cross-dimensional thermalization on a low-
density thermal sample, with aLMS

s values obtained from the
lattice modulation spectroscopy obtained in Ref. [29]. In brief
we extract aLMS

s as follows. We prepare an ultracold sample
of 166Er atoms in a three-dimensional optical lattice, created
by two retro reflected laser beams at 532 nm in the horizontal
plane and by one retroreflected laser beam at 1064 nm along
the vertical z direction, defined by gravity. The final lattice
depth along the three directions is (sx, sy, sz ) = (20, 20, 100),
in units of Erec = 4.2 kHz (1.05 kHz) for 532 nm (1064 nm).
The uncertainty on sx, sy, and sz is about 5%. In such a deep
lattice, the atoms are in the Mott insulator phase [23].

We then create particle-hole excitations by sinusoidally
modulating the power of the horizontal lattice beams for 90 ms
with a peak-to-peak amplitude of about 30% and measure
the recovered Bose-Einstein condensation (BEC) fraction af-
ter melting of the lattice. At the resonance condition, where
the modulation frequency matches the particle-hole excitation
gap, we observe a resonant reduction in the BEC fraction
[45]. The particle-hole excitation gap is directly given by
the on-site interaction U = Uc + Udd. Here, Uc is the contact
interaction—and thus depends on the unknown aLMS

s —while
the on-site dipolar interaction Udd can be accurately calcu-
lated. We repeat the measurements at various magnetic-field
values and, for each, we extract aLMS

s .
In Fig. 3, we compare aLMS

s with as extracted from the
thermalization measurements. We see an overall very good
agreement between the value of as extracted using the two
techniques. This shows that the cross-dimensional thermaliza-
tion approach combined with the Enskog equations is a very
reliable method to extract as, even in the case of complex
atoms for which the knowledge of α(as, θ ) is not a priori
given.

VII. DENSITY DEPENDENCE

Our measurements for the 166Er isotope were performed
in a regime of relatively low density (n̄ � 0.5×1013 cm−3).
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FIG. 4. Measurements of α(as, θ ) as a function of n̄. The blue
circles correspond to the data sets at 1 G, shown in Fig. 3. The black
solid line marks the value given by the analytic formula in Eq. (9).
All measurements were performed with θ = 0

◦
. Error bars denote

the standard error.

Interestingly, when applying the same method in a regime of
high density, we observe a dependence of the thermalization
rate on the density which goes beyond the Enskog approach.
For instance, we repeat the cross-dimensional thermalization
measurements for 166Er at B = 1 G and the variable cloud
density n̄. We control the density by either increasing N or ap-
plying a tighter trapping configuration of (ωcyl

x , ω
cyl
y , ω

cyl
z ) ≈

2π×(300, 19, 300) Hz before compression, or both. From the
lattice modulation spectroscopy, we have extracted the value
as = 68.3(7)a0 at B = 1 G. By fixing this value—meaning to
impose that the scattering length does not depend on density—
and using Eq. (1), we can determine α(as, 0

◦
) as a function of

n̄. Note that for all measurements we find a Knudsen number,
given by the ratio of the mean free path and the size of
the atomic cloud, >10. This implies that we are far away
from the hydrodynamic regime, which could otherwise lead
to modifications in the thermalization behavior [46,47].

Figure 4 shows α(as, 0
◦
) for different values of n̄. We find

a pronounced dependency on n̄, with a rapid increase and
an eventual saturation at high densities. Such a behavior is
not captured by our theoretical model, which, as reflected
in the definition of α(as, 0

◦
) in Eq. (1), predicts no density

dependence. To the best of our knowledge, such a dependence
has not been reported in previous works on cross-dimensional
thermalization. Possible explanations are rooted in various
causes, either physical or technical nature. Although be-
ing above Tc, precursors of quantum many-body phenomena
might influence the scattering behavior. Exemplary, we tried
to explicitly include effects coming from Bose enhancement
into our theoretical framework. This did not have significant
influence on the thermalization behavior. Note that, in the
experiment, we varied the initial temperature of the atomic
cloud and the excitation strength, which did not show any
influence on the observations.

Another possible explanation, based on unavoidable exper-
imental imperfections, is rooted in deviations from an ideal
harmonic trapping condition, leading to a modification of the
kinetic energy and the mean density. Such a variation would
manifest in an apparent change of α(as, 0

◦
) [see Eq. (1)].

Indeed, Eqs. (2) and (3) are only valid for an ideal harmonic
trapping confinement. Furthermore, trap anharmonicities lead
to a larger kinetic temperature after thermalization compared
to the case of purely harmonic traps as seen when formulating
the dynamics using the scaling ansatz method [48]. As this
effect is stronger for larger densities, this further suggests that
the range of low densities is the appropriate one to consider.
First Monte Carlo simulations performed by using a realistic
Gaussian trapping potential seem to support this assumption
(see Appendix C).

We emphasize that, due to the agreement with the lattice
modulation spectroscopy results and the above discussion on
anharmonicities, and since our measurements to extract as

have been performed at low densities, we are confident that
our method remains valid.

VIII. SCATTERING LENGTH FOR 164Er and 170Er

After the detailed study on 166Er and the benchmark-
ing of the results with high-precision lattice modulation
spectroscopy, we confidently apply our cross-dimensional
thermalization approach to two other isotopes, 164Er and
170Er. Again we start with a Fano-Feshbach spectroscopy
between 0 and 5 G to identify the position of the scattering
resonances as shown in Fig. 5. We note that these Fano-
Feshbach spectra have not been reported previously. For the
cross-dimensional thermalization measurements we follow a
similar experimental procedure as described above. From the
thermalization curve, we again use both the full fit of the
Enskog equations and the iterative approach on α(as, 0

◦
) to

determine as from the exponential growth rate τ .
Figure 5 shows as for the isotopes 164Er [panel (a)] and

170Er [panel (b)]. While the scattering behavior for 164Er
is, similarly to 166Er, dominated by two broad resonances
at 1.5 and 3.3 G, 170Er features several narrow overlapping
resonances, providing different test scenarios for our cross-
dimensional thermalization. Although minor deviations can
be observed in the vicinity of Fano-Feshbach resonances, for
both isotopes the extracted as values using the two approaches
are once more in good agreement.

IX. SCALING OF BACKGROUND SCATTERING
LENGTH WITH MASS

The knowledge on as as a function of the magnetic field
allows us to extract an effective background scattering length
abg

s for each isotope. The general behavior of as with B can be
described by generalizing the well-known formula [49]

as(B) = (
abg

s + sB
) Nres∏

i=1

(
1 − �Bi

B − Bi

)
(10)

to the case of Nres overlapping resonances of position Bi and
width �Bi and allowing for a smooth off-resonant variation
of as with B. We observe that a linear variation of slope s
already well reproduces the data with as(0) defined as the
effective abg

s . We note that different mechanisms could lead
to an off-resonant variation of as. For instance, the influence
of broad Fano-Feshbach resonances, which are not within our
measurement range, could lead to a smooth variation of the
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FIG. 5. Atom-loss spectroscopy (orange circles) as a function of B for a fixed holding time of (a) 250 ms for 164Er and (b) 500 ms for 170Er.
For each B value, the data point is an average of four to five repetitions and it is normalized to the maximum averaged atom number recorded
in the explored magnetic-field range. Further, as values extracted from cross-dimensional thermalization measurements using both the Enskog
equations (red squares) and the analytic formula of Eq. (8) (blue diamonds) are shown. The solid black lines represent a fit of Eq. (10) to as

obtained using the Enskog equations. Error bars and the shaded area of the fitting results denote the standard error.

background behavior, similar to that observed for cesium [50].
Alternatively, the effect could be due to the coupling induced
by DDI between the incident scattering channel and Zeeman
states that lie higher in energy. As a consequence this results
in a perturbation of the molecular potential, whose strength
depends on the magnetic field, leading to an increasing value
of the van der Waals C6 coefficient [51].

To parametrize as as a function of B, we fit Eq. (10) to the
measured as for 164Er, 166Er, 168Er, and 170Er. For 166Er and
168Er, we use the scattering lengths obtained from the lattice
modulation spectroscopy, corresponding to our most accurate
determination (see solid lines in Figs. 3 and 8. For 164Er and
170Er, we fit Eq. (10) to the as data obtained by applying
the Enskog equations to the cross-dimensional thermalization
measurements (see solid lines in Fig. 5). More details on
the fitting procedure as well as the complete list of the fit
parameters are given in Appendix F. In general, we observe
that the fitting function reproduces very well the behavior of
as for every isotope.

Figure 6 shows the value of abg
s from the fit as a function

of the isotope mass. We observe a monotonic rising of abg
s

with increasing m, which might be compatible with different
functional forms, including a simple linear increase. Under the
assumption that erbium has a similar behavior to ytterbium
and cesium, we can use the model for the mass scaling as
developed in Refs. [52–54]. Such a model assumes that as is
only given by the Van der Waals potential U (r) = −C6/r6,
with C6 being the Van der Waals coefficient. This might be
a rather severe approximation for magnetic atoms, but, in the
absence of alternative models, it is interesting to compare the
simple mass-scaling approach to erbium.

As introduced in Ref. [52], as can be written as

as = ā

[
1 − tan

(
φ − π

8

)]
, (11)

with ā = 2−3/2 
(3/4)

(5/4) ( mC6

h̄2 )1/4 being the characteristic length
and

φ =
√

m

h̄

∫ ∞

R0

√
−U (r)dr. (12)

Here, 
(x) is the Gamma function and R0 is the classical
turning point of U (r). Although the exact shape of U (r) is un-
known, Eq. (11) can be employed to extract a mass scaling due
to the dependence of φ ∝ √

m [53]. Such a scaling is valid, as
long as the mass-dependent modification of U (r) is negligible.
Furthermore, φ allows for the calculation of the number of
bound states NB via the relation NB = �φ/π − 5/8�, where
� � denotes the floor integer function.

163 164 165 166 167 168 169 170 171
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FIG. 6. Background scattering length abg
s for four bosonic iso-

topes (red circles). The solid line represents the best fit with φ/π =
144(1) (see text). The shaded area, enclosed by the dotted lines,
represents the fitting function for φ = 143 and φ = 145. The error
bars denote the standard error of the fit of Eq. (10) to the experimental
data.

063307-6



DETERMINATION OF THE SCATTERING LENGTH OF … PHYSICAL REVIEW A 105, 063307 (2022)

We now apply this model to our Er case. Figure 6 shows
the fit of Eq. (11) to the experimental data (see Appendix G
for details). We obtain the best agreement for φ/π = 144(1),
leading to NB = 143(1) for 168Er. Despite the similar C6 co-
efficient, NB is approximately a factor of 2 larger than for
ytterbium [53]. Note that NB is in agreement with the result
obtained when using the same approach but assuming a hard-
core potential (see Appendix H). We would like to emphasize
once more that this model does not consider any contribution
arising from the DDI. An improved description calls for the
development of advanced theoretical models.

X. CONCLUSION

In conclusion, we report on an accurate study of the scat-
tering length of four different isotopes of erbium. Our work
focuses on the low-magnetic-field region, which is the range
of most interest in current experiments. Our experimental sur-
vey combines two different techniques: a high-precision, yet
demanding, approach based on the measurement of the on-site
interaction in a Mott insulator phase, and another one based
on measuring the re-equilibration time in cross-dimensional
thermalization experiments. From the latter, we extract the
the value of as by both numerically applying the full Enskog
equations and using the analytic formulation for α(as, θ ). All
these different approaches, benchmarked one with respect to
the others, provide a very consistent measure of the scattering
length in the region of interest. These results will be relevant
for current experiments and moreover point to a practical
manner to extract as with reduced experimental effort, which
can be readily generalized to other magnetic lanthanides.
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APPENDIX A: ANALYTIC NUMBER OF COLLISIONS
PER RETHERMALIZATION

Analytic expressions for α(as, θ ) can be derived under a
short-time approximation, with the Enskog equations

d
〈
q2

j

〉
dt

− 2

m
〈q j p j〉 = 0, (A1a)

d
〈
p2

j

〉
dt

+ 2mω2
j 〈q j p j〉 = C

[
p2

j

]
, (A1b)

d〈q j p j〉
dt

− 1

m

〈
p2

j

〉 + mω2
j

〈
q2

j

〉 = 0, (A1c)

where r j and p j are positions and momenta, respectively
( j = x, y, z), and C is the collision integral. The derivation

follows from Ref. [37], but we present a brief outline here for
completeness. The gas is assumed to be close to equilibrium,
allowing us to treat r j and p j as Gaussian distributed. Ther-
malization trajectories are then tracked using the Gaussian
widths along each axis to compute the energy differential

〈χ j〉 ≡ Ej − kBTf , (A2)

where Tf = (Tx + Ty + Tz )/3 is the final equilibration tem-
perature (obtained from the equipartition theorem), 〈. . .〉
denotes an ensemble average assuming a Gaussian phase-
space distribution whose widths are allowed to vary, and
Ej = 〈p2

j〉/(2m) + mω2
j 〈r2

j 〉/2 is the sum of kinetic and
potential energies in the jth direction. The Enskog equa-
tions dictate that the relaxation of 〈χ j〉 follows the differential
equation

d〈χ j〉
dt

= C[χ j]. (A3)

For small deviations from equilibrium and at short times,
rethermalization can be approximated with a single decay rate
γ , such that C[χ ] ≈ −γ 〈χ〉. This results in the relation

dEj

dt
= −γy j (Ej − kBTf ) = C[Ej], (A4)

where the subscript on γy j indicates that the gas was excited
along y, and rethermalization was measured along j. This then
permits us to compute

αy j = n̄σ̄vr

γy j
=

(
Ej − kBTf

C[Ej]

)
n̄σ̄vr, (A5)

which for j = z has the form in Eq. (8).

APPENDIX B: FITTING ENSKOG EQUATIONS
TO EXPERIMENTAL DATA

The extraction of the scattering lengths as from cross-
dimensional thermalization data was done here by means of
full numerical solutions to the Enskog equations. To do so,
as was left as a float parameter in the theory and then varied
until a best fit between the theoretical and experimental data
was obtained. A feature we noticed during fitting was the high
sensitivity of thermalization rates to variations in the trapping
frequencies ω, over the finite-time quench. Measurement un-
certainties, therefore, motivate us to also leave ω as a float
parameter, with allowed values within its 1-σ error bars. This
is applied to the trapping frequencies both before and after the
quench.

We performed fits using a χ2 optimization criterion,

min
ω,as

tend∑
t=t0

(
T (t ) − TE[T (0); ω, as](t )

δT (t )

)2

, (B1)

where the sum runs over measurement time instances t , T (t )
is the temperature data from the experiment, δT (t ) is the
temperature measurement uncertainty, and TE[T (0); ω, as] is
the solution to the Enskog equations with initial condition
T (0) and fit parameters as and ω.

To reduce biasing of the fits, we run an iterative algorithm
that recursively fits ω and as in succession until they converge
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FIG. 7. Benchmarking of the Enskog simulation results for Tz

(red solid line) with Monte Carlo simulations (black dashed line).
The data set is the same as that in Fig. 1.

to stable values. Such a procedure would take exceedingly
long times (approximately weeks) with full Monte Carlo
(MC) simulations, but can be done in minutes with the Enskog
equations on a current-day computing device.

Solutions to the Enskog equations have shown themselves
accurate when compared to MC simulations [37,41]. We
show their accuracy here yet again, using the parameters
from the current experimental setup. An illustrative example
is provided in the plot of Fig. 7, comparing an instance of
the Enskog solutions (red solid line), MC simulations (black
dashed line), and the experimental data (blue circles).

APPENDIX C: MONTE CARLO SIMULATIONS
INCLUDING TRAP ANHARMONICITIES

Optical dipole traps are, in many studies, assumed to
be well modeled by purely harmonic potentials. This may,
however, be inadequate in regimes with significant trap an-
harmonicity effects, which we currently attribute the density
dependence of α to. In such cases, the potential is better mod-
eled as two cross-propagating Gaussian-profile beams along
the y and z axes (with gravity). This produces the confinement

potential

VODT(r) = − 2Ũ1P1

πw1,x(z)w1,y(z)
e
−2

(
x2

w2
1,x (z)

+ y2

w2
1,y (z)

)

− 2Ũ2P2

πw2,x(y)w2,y(y)
e
−2

(
x2

w2
2,x (y)

+ z2

w2
2,z (y)

)
+ mgz,

(C1)

where P is the laser power, Ũ is an atomic polarizability
parameter, and

w(z) = w0

√
1 + z2

z2
R

, (C2)

with zR and w0 denoting Rayleigh lengths and beam widths,
respectively.

Such a potential limits the applicability of the aforemen-
tioned Enskog equations as formulated in Ref. [41]. Instead,
more robust molecular dynamics (MD) methods are required
to accurately predict thermalization trajectories. We imple-
ment an MD simulation similar to that in Ref. [20], which
evolves simulation particles under the action of VODT via the
Verlet symplectic integrator:

qk = rk (t ) + �t

2m
pk (t ), (C3a)

pk (t + �t ) = pk (t ) + Fk�t, (C3b)

rk (t + �t ) = qk + �t

2m
pk (t + �t ), (C3c)

where subscripts k denote the kth simulation particle, �t is
the simulation time-step, t is the time, and

Fk = −∇VODT(rk ). (C4)

Dipolar collisions are then computed with the direct-
simulation Monte Carlo method [56], which determines
postcollision momenta via stochastic sampling of the differ-
ential cross section.

In a preliminary study of the density dependence, ideal
Gaussian beam profiles are assumed, along with perfectly
accurate beam widths and Rayleigh lengths. Following a
trap quench, thermalization of the out-of-equilibrium gas in
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FIG. 8. Atom-loss spectroscopy (orange circles) as a function of B for a fixed holding time of 500 ms. For each B value, the data point
is an average of six to seven repetitions and it is normalized to the maximum averaged atom number recorded in the explored magnetic-field
range. Further, the measured scattering lengths as obtained for 168Er from lattice modulation spectroscopy measurements are shown. The solid
black line represents a fit to aLMS

s . The shaded area and the error bars denote the standard error.
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TABLE I. Values for abg
s and s obtained from the fit of Eq. (10) to

as for the four bosonic isotopes. The error denotes the fit error of one
standard deviation.

Isotope a0bg (a0) s (a0/G)

164 52(6) 9(3)
166 61(3) 5.4(9)
168 110(2) 11(2)
170 129(9) 20(10)

VODT indeed shows an apparent increase of α with den-
sity, qualitatively similar to that observed in the experiment.
This effect is absent in simulations with an ideal harmonic
trap. Furthermore, in higher density regimes, the simulations
with VODT predict the experimentally observed equilibration
temperatures more accurately compared to the harmonic trap
case. These early findings on density dependence from trap
anharmonicities are intriguing, and a cautionary tale for future
experiments. However, we do not develop this idea further
here and leave such analysis for future works.

APPENDIX D: FANO-FESHBACH SPECTROSCOPY

To identify the positions of the Fano-Feshbach resonances
we perform high-resolution loss spectroscopy in a cylin-
drically symmetric trap. We evaporatively cool the atoms
until they reach a temperature between T = 300 and 400
nK. At this stage, the atom number is between 6×104

and 1.2×104 with typical trap frequencies of (ωx, ωy, ωz ) =
2π×(300, 30, 300) Hz. The exact values depend on the iso-
tope choice. After reaching thermal equilibrium, we change B,
oriented along the z axis, in 1 ms to the desired value and wait
for a holding time between 250 and 500 ms. We use different
holding times for different data sets to avoid saturation effects
of the resonances for higher densities. After the holding time,
we measure the atom number using absorption imaging after
a time-of-flight expansion of 25 ms. The results of the loss-
spectroscopy measurements are shown in Figs. 3, 5, 8.

APPENDIX E: SCATTERING LENGTH FOR 168Er

To obtain as for the 168Er isotope, we follow a similar
approach as for 166Er. First, we perform loss spectroscopy
to identify the position of Fano-Feshbach resonances. We
then transfer the atoms into an optical lattice with a depth of
(sx, sy, sz ) = (20, 20, 40)Erec and apply the lattice modulation

TABLE II. Parameters for the Fano-Feshbach resonances in-
cluded in the fit of Eq. (10) to as for 164Er. The error denotes the
fit error of one standard deviation. Values without error are fixed in
the fitting procedure.

Position Bi (G) Width �Bi (G)

1.52 0.22(3)
2.67 0.005
2.83 0.005
3.26 0.10(3)

TABLE III. Parameters for the Fano-Feshbach resonances in-
cluded in the fit of Eq. (10) to as for 166Er. The error denotes the
fit error of one standard deviation. Values without error are fixed in
the fitting procedure.

Position Bi (G) Width �Bi (G)

0.02(5) 0.05(2)
3.04(5) 0.15(2)
4.208 0.01
4.96 0.005

spectroscopy technique to extract as. The lattice modulation
spectroscopy follows the same lines as for the 166Er isotope
(see main text). Figure 8 summarizes the results for 168Er and
shows the Fano-Feshbach spectroscopy result as well as as as
a function of B in the magnetic field range from 0 to 5 G.

APPENDIX F: EXTRACTING BACKGROUND
SCATTERING LENGTH

To obtain a value for abg
s , we fit Eq. (10) either to as

obtained from the full Enksog equations (164Er and 170Er) or
to aLMS

s (166Er and 168Er). Due to the different numbers of
Fano-Feshbach resonances compared to the number of avail-
able data points for as, we slightly vary the fitting approach
for the individual isotopes. Depending on the position and
the width of the resonance, for some resonances, we fix the
position Bi to the minimum of the loss feature and keep only
the width �Bi as a floating parameter. For the very narrow
resonances, which have a negligible influence on the overall
scattering behavior, we fix both Bi and �Bi.

Table I gives the results for the background scattering
lengths abg

s and the slopes s for all four isotopes. Moreover,
Tables II–V contain a detailed listing of all Fano-Feshbach
resonances and how they are included in the fitting proce-
dure. Note that for 170Er we are aware of the existence of
a particularly broad resonance at 6.91 G [57], which we in-
clude with variable width. When looking closely, the onset
of this resonance can actually be seen as a reduction of N
towards higher magnetic-field values in the loss spectroscopy
[see Fig. 5(b)].

TABLE IV. Parameters for the Fano-Feshbach resonances in-
cluded in the fit of Eq. (10) to as for 168Er. The error denotes the
fit error of one standard deviation. Values without error are fixed in
the fitting procedure.

Position Bi (G) Width �Bi (G)

0.49 0.005
0.911(6) 0.032(2)
1.51 0.01
2.174(4) 0.038(2)
2.471(9) 0.19(1)
2.86 0.005
3.79 0.006(5)
4.23 0.005
4.5 0.005
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TABLE V. Parameters for the Fano-Feshbach resonances in-
cluded in the fit of Eq. (10) to as for 170Er. The error denotes the
fit error of one standard deviation. Values without error are fixed in
the fitting procedure.

Position Bi (G) Width �Bi (G)

0.35 0.005
0.86 0.028(12)
1.12 0.005
1.62 0.01
2.17 0.067(7)
2.74 0.134(9)
3.3 0.01(1)
3.57 0.01
4.38 0.005
4.49 0.01
6.91 0.8(7)

APPENDIX G: χ2 ANALYSIS FOR MASS SCALING

In this section, we describe our analysis of the background
as of the four Er isotopes (Fig. 6) with Eq. (10). To find
the best-fitting parameter φ, we analyze the agreement of the
theoretical model in Eq. (11) with our experimental data. For
each value of φ, we calculate the χ2 via

χ2 =
4∑

i=1

(
amod

s − ai
s

σ i
s

)2

. (G1)

Here, amod
s is the scattering length given by the model for the

corresponding φ, and ai
s and σ i

s are the measured as with the
corresponding standard error.

The behavior of χ2 is nonmonotonic with the appearance
of several minima. We identify the absolute minimum of χ2

for φ = 144.03. To further obtain an estimate for the error of

φ we fit a quadratic function to the local minima. We extract
the limits of the confidence interval by considering the region
where χ2 � χ2 + 1.

APPENDIX H: HARD-CORE POTENTIAL
FOR MASS SCALING

The model contains the assumption that the s-wave scat-
tering length is given at large distances by the van-der-Waals
potential scaling with UvdW(r) ∝ −C6/r6, with C6 being the
Van der Waals coefficient, and at short distances r < rc by a
hard-core potential [52]. In this specific case, the scaling of
abg

s can be described by

abg
s = ā tan(�), (H1)

where ā = 
(3/4)
2
√

(2)
(5/4)
ac, with ac = ( 2mrC6

h̄2 )1/4 being the char-
acteristic scattering length scale of the potential, and � =
a2

c
2r2

c
− 3π

8 is the semiclassical phase [52].
From theoretical calculations in Ref. [6] we use C6 =

1723 a.u. and we estimate from the theoretical interaction
potential given in Ref. [6] that rc ≈ 4a0–8a0. We fit Eq. (H2)
to abg

s of the four bosonic isotopes. Due to a large number of
possible local minima, we combine the fitting with a mini-
mization of the χ2 value while varying the start parameter for
rc. We obtain the best agreement for rc = 5.05(5)a0.

In addition, the Levinson theorem [58] allows us to esti-
mate the number of bound states NB, which can be calculated
from the semiclassical phase � using

NB =
[
�

π
− 3

8

]
+ 1, (H2)

where the square brackets mean the integer part. For the
current fitting we obtain NB ranging from 141 to 144, in
agreement with the approach in the main text. We want to
emphasize, that this modeling of abg

s is a simple approach and
a more thorough analysis could add deeper valuable insights.
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Zupanič, R. Grimm, and F. Ferlaino, Narrow-line magneto-
optical trap for erbium, Phys. Rev. A 85, 051401(R) (2012).

[40] F. Reif, Fundamentals of Statistical and Thermal Physics
(McGraw-Hill, New York, 1965)

[41] R. R. W. Wang, A. G. Sykes, and J. L. Bohn, Linear response
of a periodically driven thermal dipolar gas, Phys. Rev. A 102,
033336 (2020).

[42] B. DeMarco, J. L. Bohn, J. P. Burke, M. Holland, and D. S. Jin,
Measurement of p-Wave Threshold Law Using Evaporatively
Cooled Fermionic Atoms, Phys. Rev. Lett. 82, 4208 (1999).

[43] Because of the initial low-temperature anisotropy, we adopt
α = 2.5, following Refs. [18,42,55].

[44] S. Baier, D. Petter, J. H. Becher, A. Patscheider, G. Natale, L.
Chomaz, M. J. Mark, and F. Ferlaino, Realization of a Strongly
Interacting Fermi Gas of Dipolar Atoms, Phys. Rev. Lett. 121,
093602 (2018).

[45] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I.
Bloch, Quantum phase transition from a superfluid to a Mott
insulator in a gas of ultracold atoms, Nature (London) 415, 39
(2002).
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[Lé17] J. Léonard, A. Morales, P. Zupancic, T. Donner, and T. Esslinger, Monitoring and
manipulating higgs and goldstone modes in a supersolid quantum gas, Science 358
https://www.science.org/doi/pdf/10.1126/science.aan2608 (2017).

[Mac13] T. Macr̀ı, F. Maucher, F. Cinti, and T. Pohl, Elementary excitations of ultracold
soft-core bosons across the superfluid-supersolid phase transition, Phys. Rev. A
87, 061602(R) (2013).

[Mac14] T. Macr̀ı, S. Saccani, and F. Cinti, Ground state and excitation properties of soft-
core bosons, Journal of Low Temperature Physics 177, 59–71 (2014).

http://link.aps.org/doi/10.1103/PhysRev.106.1135
http://link.aps.org/doi/10.1103/PhysRev.106.1135
https://doi.org/10.1103/PhysRevLett.25.1543
https://doi.org/10.1038/nature21067
https://doi.org/10.1038/nature21067
https://doi.org/10.1038/nature21431
https://doi.org/10.1038/nature21431
http://link.aps.org/doi/10.1103/PhysRevA.84.041604
http://link.aps.org/doi/10.1103/PhysRevA.86.063609
http://link.aps.org/doi/10.1103/PhysRevA.86.063609
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/nature09887
http://dx.doi.org/10.1038/141643a0
http://dx.doi.org/10.1038/141643a0
http://link.aps.org/doi/10.1103/PhysRevLett.107.190401
http://link.aps.org/doi/10.1103/PhysRevLett.107.190401
http://link.aps.org/doi/10.1103/PhysRevLett.115.075303
http://link.aps.org/doi/10.1103/PhysRevLett.115.075303
https://www.science.org/doi/abs/10.1126/science.aan2608
https://www.science.org/doi/abs/10.1126/science.aan2608
https://link.aps.org/doi/10.1103/PhysRevA.87.061602
https://link.aps.org/doi/10.1103/PhysRevA.87.061602
https://doi.org/10.1007/s10909-014-1192-7
https://doi.org/10.1007/s10909-014-1192-7


BIBLIOGRAPHY 205
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